Co-pyrolysis Kinetics of Expandable Polystyrene Foam Plastics and Biomass

被引:3
作者
Li, Baoxia [1 ]
Jin, Pen [1 ]
Cao, Shoukun [1 ]
机构
[1] Huaqiao Univ, Coll Chem Engn, Xiamen 361000, Fujian, Peoples R China
来源
ADVANCES IN ENVIRONMENTAL SCIENCE AND ENGINEERING, PTS 1-6 | 2012年 / 518-523卷
关键词
EPS; Biomass; Co-pyrolysis; Kinetics; WOOD BIOMASS; MIXTURES;
D O I
10.4028/www.scientific.net/AMR.518-523.3295
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Based on the thermogravimetric analysis, co-pyrolysis of expandable polystyrene foam plastics (EPS) and three kinds of biomass (bagasse, peanut shell, corncob) were investigated. The result shows that synergistic effects of the co-pyrolysis of EPS/bagasse and BPS/corncob are obvious, but there is no remarkable synergistic effect for the EPS and peanut shell blends. The kinetic analysis indicates that the pyrolysis processes can be described as first order reactions model, a pretty good fitting of experimental data was obtained for all samples. In the BPS and the biomass pyrolysis, respectively, the former can be described as the one first-order reaction model, and the latter can be described as the three consecutive models, while the co-pyrolysis of BPS and biomass needs to be described as the four consecutive models.
引用
收藏
页码:3295 / 3301
页数:7
相关论文
共 50 条
  • [1] Co-pyrolysis behaviors and kinetics of plastics-biomass blends through thermogravimetric analysis
    Han, Bin
    Chen, Yu
    Wu, Yulong
    Hua, Derun
    Chen, Zhen
    Feng, Wei
    Yang, Mingde
    Xie, Quanhua
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 115 (01) : 227 - 235
  • [2] Co-pyrolysis of lignocellulosic biomass and plastics: A comprehensive study on pyrolysis kinetics and characteristics
    Thuan Anh Vo
    Quoc Khanh Tran
    Hoang Vu Ly
    Kwon, Byeongwan
    Hwang, Hyun Tae
    Kim, Jinsoo
    Kim, Seung-Soo
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 163
  • [3] Co-pyrolysis of biomass and binary single-use plastics: synergy, kinetics, and thermodynamics
    Mariyam, Sabah
    Parthasarathy, Prakash
    Pradhan, Snigdhendubala
    Al-Ansari, Tareq
    McKay, Gordon
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2024, 43 (01)
  • [4] Pyrolysis characteristics and kinetics of co-pyrolysis of microalgae and plastics
    Tang Z.-Y.
    Chen W.
    Chen X.
    Chen Y.-Q.
    Hu Q.
    Cheng W.
    Yang H.-P.
    Chen H.-P.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2023, 51 (08): : 1145 - 1154
  • [5] Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis
    Bin Han
    Yu Chen
    Yulong Wu
    Derun Hua
    Zhen Chen
    Wei Feng
    Mingde Yang
    Quanhua Xie
    Journal of Thermal Analysis and Calorimetry, 2014, 115 : 227 - 235
  • [6] A comprehensive review on co-pyrolysis of lignocellulosic biomass and polystyrene
    Anshu, Kumari
    Kenttamaa, Hilkka I.
    Thengane, Sonal K.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2024, 205
  • [7] CO-PYROLYSIS OF COAL, BIOMASS AND WASTE PLASTICS
    MIURA, K
    HASHIMOTO, K
    MAE, K
    INOUE, S
    KAGAKU KOGAKU RONBUNSHU, 1994, 20 (06) : 918 - 925
  • [8] Evaluation of char properties from co-pyrolysis of biomass/plastics: Effect of different types of plastics
    Chen, He
    Rocha, Luiz A. O.
    Zhang, Houlei
    Xiong, Yuanquan
    Zhang, Shuping
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2025, 193 : 228 - 238
  • [9] Kinetic study for the co-pyrolysis of lignocellulosic biomass and plastics using the distributed activation energy model
    Navarro, M. V.
    Lopez, J. M.
    Veses, A.
    Callen, M. S.
    Garcia, T.
    ENERGY, 2018, 165 : 731 - 742
  • [10] Insights into pyrolysis and co-pyrolysis of biomass and polystyrene: Thermochemical behaviors, kinetics and evolved gas analysis
    Ozsin, Gamzenur
    Putun, Ayse Eren
    ENERGY CONVERSION AND MANAGEMENT, 2017, 149 : 675 - 685