Co-pyrolysis Kinetics of Expandable Polystyrene Foam Plastics and Biomass

被引:3
|
作者
Li, Baoxia [1 ]
Jin, Pen [1 ]
Cao, Shoukun [1 ]
机构
[1] Huaqiao Univ, Coll Chem Engn, Xiamen 361000, Fujian, Peoples R China
关键词
EPS; Biomass; Co-pyrolysis; Kinetics; WOOD BIOMASS; MIXTURES;
D O I
10.4028/www.scientific.net/AMR.518-523.3295
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Based on the thermogravimetric analysis, co-pyrolysis of expandable polystyrene foam plastics (EPS) and three kinds of biomass (bagasse, peanut shell, corncob) were investigated. The result shows that synergistic effects of the co-pyrolysis of EPS/bagasse and BPS/corncob are obvious, but there is no remarkable synergistic effect for the EPS and peanut shell blends. The kinetic analysis indicates that the pyrolysis processes can be described as first order reactions model, a pretty good fitting of experimental data was obtained for all samples. In the BPS and the biomass pyrolysis, respectively, the former can be described as the one first-order reaction model, and the latter can be described as the three consecutive models, while the co-pyrolysis of BPS and biomass needs to be described as the four consecutive models.
引用
收藏
页码:3295 / 3301
页数:7
相关论文
共 50 条
  • [1] Co-pyrolysis of lignocellulosic biomass and plastics: A comprehensive study on pyrolysis kinetics and characteristics
    Thuan Anh Vo
    Quoc Khanh Tran
    Hoang Vu Ly
    Kwon, Byeongwan
    Hwang, Hyun Tae
    Kim, Jinsoo
    Kim, Seung-Soo
    JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2022, 163
  • [2] CO-PYROLYSIS OF COAL, BIOMASS AND WASTE PLASTICS
    MIURA, K
    HASHIMOTO, K
    MAE, K
    INOUE, S
    KAGAKU KOGAKU RONBUNSHU, 1994, 20 (06) : 918 - 925
  • [3] Pyrolysis characteristics and kinetics of co-pyrolysis of microalgae and plastics
    Tang Z.-Y.
    Chen W.
    Chen X.
    Chen Y.-Q.
    Hu Q.
    Cheng W.
    Yang H.-P.
    Chen H.-P.
    Ranliao Huaxue Xuebao/Journal of Fuel Chemistry and Technology, 2023, 51 (08): : 1145 - 1154
  • [4] Catalytic Co-pyrolysis of Biomass and Plastics (Polypropylene and Polystyrene) Using Spent FCC Catalyst
    Kumar, Kanduri Praveen
    Srinivas, Seethamraju
    ENERGY & FUELS, 2020, 34 (01) : 460 - 473
  • [5] Co-pyrolysis behaviors and kinetics of plastics–biomass blends through thermogravimetric analysis
    Bin Han
    Yu Chen
    Yulong Wu
    Derun Hua
    Zhen Chen
    Wei Feng
    Mingde Yang
    Quanhua Xie
    Journal of Thermal Analysis and Calorimetry, 2014, 115 : 227 - 235
  • [6] Insights into pyrolysis and co-pyrolysis of biomass and polystyrene: Thermochemical behaviors, kinetics and evolved gas analysis
    Ozsin, Gamzenur
    Putun, Ayse Eren
    ENERGY CONVERSION AND MANAGEMENT, 2017, 149 : 675 - 685
  • [7] Co-pyrolysis of Biomass and Plastics waste: A Modelling Approach
    Oyedun, Adetoyese O.
    Gebreegziabher, Tesfaldet
    Hui, Chi Wai
    16TH INTERNATIONAL CONFERENCE ON PROCESS INTEGRATION, MODELLING AND OPTIMISATION FOR ENERGY SAVING AND POLLUTION REDUCTION (PRES'13), 2013, 35 : 883 - 888
  • [8] Progress in co-pyrolysis technology of agricultural biomass and plastics
    Xie T.
    Zhao L.
    Yao Z.
    Huo L.
    Jia J.
    Zhang P.
    Tian L.
    Fu G.
    Huagong Jinzhan/Chemical Industry and Engineering Progress, 2022, 41 (10): : 5306 - 5315
  • [9] Co-pyrolysis behaviors and kinetics of plastics-biomass blends through thermogravimetric analysis
    Han, Bin
    Chen, Yu
    Wu, Yulong
    Hua, Derun
    Chen, Zhen
    Feng, Wei
    Yang, Mingde
    Xie, Quanhua
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 115 (01) : 227 - 235
  • [10] Co-pyrolysis of biomass and binary single-use plastics: synergy, kinetics, and thermodynamics
    Mariyam, Sabah
    Parthasarathy, Prakash
    Pradhan, Snigdhendubala
    Al-Ansari, Tareq
    McKay, Gordon
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2024, 43 (01)