On Derivations in Semiprime Rings

被引:32
作者
Ali, Shakir [1 ]
Huang Shuliang [2 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
[2] Chuzhou Univ, Dept Math, Chuzhou 239012, Anhui, Peoples R China
关键词
Semi(prime) ring; Derivation; Centralizing and commuting mapping; CENTRALIZING MAPPINGS; PRIME-RINGS;
D O I
10.1007/s10468-011-9271-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring, S a nonempty subset of R and d a derivation on R. A mapping f : R -> R is called commuting on S if [f(x),x] = 0 for all x is an element of S. In this paper, our purpose is to produce commutativity results for rings and show that if R is a 2-torsion free semiprime ring and I a nonzero ideal of R, then a derivation d of R is commuting on I if one of the following conditions holds: (i) d(x) o d(y) = x o y (ii) d(x) o (y) = -(x o y) (iii) d(x) o (y) = 0 (iv) [d(x),d(y)] = -[x,y] (v) d(x) d(y) = xy (vi) d(x)d(y) = -xy (vii) d(x)d(y) = yx (viii) d(x)d(x) = x(2) for all x, y is an element of I. Further, if d(I) not equal 0, then R has a nonzero central ideal. Finally, some examples are given to demonstrate that the restrictions imposed on the hypotheses of the various results are not superfluous.
引用
收藏
页码:1023 / 1033
页数:11
相关论文
共 13 条
[1]  
Anderson F.W., 2002, LECT NONCOMMUTATIVE
[2]  
Argac N, ALGEBRA C, V13, P371
[3]  
Ashraf M., 2002, RESULTS MATH, V42, P3, DOI [DOI 10.1007/BF03323547, 10.1007/BF03323547]
[4]  
Ashraf M., 2001, E W J MATH, V3, P87
[5]   CENTRALIZING MAPPINGS OF SEMIPRIME RINGS [J].
BELL, HE ;
MARTINDALE, WS .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1987, 30 (01) :92-101
[6]   ON COMMUTATIVITY AND STRONG COMMUTATIVITY-PRESERVING MAPS [J].
BELL, HE ;
DAIF, MN .
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1994, 37 (04) :443-447
[7]   CENTRALIZING MAPPINGS AND DERIVATIONS IN PRIME-RINGS [J].
BRESAR, M .
JOURNAL OF ALGEBRA, 1993, 156 (02) :385-394
[8]  
Daif M. N., 1998, Int. J. Math. Math. Sci, V21, P471
[9]  
Herstein I.N., 1976, Chicago Lectures in Mathematics
[10]  
Herstein IN., 1978, Canad. Math. Bull, V21, P369, DOI [10.4153/CMB-1978-065-x, DOI 10.4153/CMB-1978-065-X]