A novel Elzaki transform homotopy perturbation method for solving time-fractional non-linear partial differential equations

被引:6
作者
Iqbal, Sajad [1 ]
Martinez, Francisco [2 ]
Kaabar, Mohammed K. A. [3 ,4 ]
Samei, Mohammad Esmael [5 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Peoples R China
[2] Technol Univ Cartagena, Dept Appl Math & Stat, Cartagena 30203, Colombia
[3] Univ Malaya, Fac Sci, Inst Math Sci, Kuala Lumpur 50603, Malaysia
[4] Gofa Ind Coll & German Adebabay, Gofa Camp, Addis Ababa 26649, Ethiopia
[5] Bu Ali Sina Univ, Dept Math, Hamadan, Hamadan, Iran
关键词
Homotopy perturbation method; Elzaki transformation; Conformable derivatives; Non-linear time-fractional PDEs; Uniquence; Convergence;
D O I
10.1186/s13661-022-01673-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents the solution of important types of non-linear time-fractional partial differential equations via the conformable Elzaki transform Homotopy perturbation method. We apply the proposed technique to solve four types of non-linear time-fractional partial differential equations. In addition, we establish the results on the uniqueness and convergence of the solution. Finally, the numerical results for a variety of alpha values are briefly examined. The proposed method performs well in terms of simplicity and efficiency.
引用
收藏
页数:23
相关论文
共 50 条
[41]   Application of homotopy perturbation method to multidimensional partial differential equations [J].
Jafari, H. ;
Saeidy, M. ;
Zabihi, M. .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2010, 87 (11) :2444-2449
[42]   Homotopy perturbation method for two dimensional time-fractional wave equation [J].
Zhang, Xindong ;
Zhao, Jianping ;
Liu, Juan ;
Tang, Bo .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (23) :5545-5552
[43]   HE'S HOMOTOPY PERTURBATION METHOD FOR SOLVING TIME FRACTIONAL SWIFT-HOHENBERG EQUATIONS [J].
Ban, Tao ;
Cui, Run-Qing .
THERMAL SCIENCE, 2018, 22 (04) :1601-1605
[44]   Qualitative Analysis of a Novel Numerical Method for Solving Non-linear Ordinary Differential Equations [J].
Kaushik S. ;
Kumar R. .
International Journal of Applied and Computational Mathematics, 2024, 10 (3)
[45]   A New Mixed Element Method for a Class of Time-Fractional Partial Differential Equations [J].
Liu, Yang ;
Li, Hong ;
Gao, Wei ;
He, Siriguleng ;
Fang, Zhichao .
SCIENTIFIC WORLD JOURNAL, 2014,
[46]   Exact solutions for non-linear Schrodinger equations by He's homotopy perturbation method [J].
Biazar, J. ;
Ghazvini, H. .
PHYSICS LETTERS A, 2007, 366 (1-2) :79-84
[47]   Convergence Analysis of Hybrid Homotopy Perturbation KT-Transform Method and its Applications for Solving Non-linear PDE's [J].
Grover, D. ;
Seth, R. K. .
JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2025, 13 (02)
[48]   Homotopy Perturbation Method for Solving Nonlinear Differential-Difference Equations [J].
Mousa, Mohamed M. ;
Kaltayev, Aidarkhan .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2010, 65 (6-7) :511-517
[49]   Improvement of the Homotopy Perturbation Method for Solving Differential Equations with Boundary Conditions [J].
Hosseini, S. S. ;
Aminataei, A. ;
Kiany, F. ;
Alizadeh, M. ;
Zahraei, M. .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2019, 58 (02) :89-95
[50]   Application of Homotopy Perturbation Method for Solving Hybrid Fuzzy Differential Equations [J].
Saberirad, F. ;
Karbassi, S. M. ;
Heydari, M. ;
Hosseini, S. M. M. .
JOURNAL OF MATHEMATICAL EXTENSION, 2018, 12 (01) :113-145