Atomic force microscope infrared spectroscopy on 15 nm scale polymer nanostructures

被引:38
作者
Felts, Jonathan R. [1 ]
Cho, Hanna [1 ]
Yu, Min-Feng [2 ]
Bergman, Lawrence A. [3 ]
Vakakis, Alexander F. [1 ]
King, William P. [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Georgia Inst Technol, Dept Aerosp Engn, Atlanta, GA 30332 USA
[3] Univ Illinois, Dept Aerosp Engn, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
ABSORPTION; RESOLUTION; CONDUCTIVITY; AFM;
D O I
10.1063/1.4793229
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We measure the infrared spectra of polyethylene nanostructures of height 15 nm using atomic force microscope infrared spectroscopy (AFM-IR), which is about an order of magnitude improvement over state of the art. In AFM-IR, infrared light incident upon a sample induces photothermal expansion, which is measured by an AFM tip. The thermomechanical response of the sample-tip-cantilever system results in cantilever vibrations that vary in time and frequency. A time-frequency domain analysis of the cantilever vibration signal reveals how sample thermomechanical response and cantilever dynamics affect the AFM-IR signal. By appropriately filtering the cantilever vibration signal in both the time domain and the frequency domain, it is possible to measure infrared absorption spectra on polyethylene nanostructures as small as 15 nm. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4793229]
引用
收藏
页数:6
相关论文
共 43 条
[1]   Mid-infrared near-field spectroscopy [J].
Amarie, Sergiu ;
Ganz, Thomas ;
Keilmann, Fritz .
OPTICS EXPRESS, 2009, 17 (24) :21794-21801
[2]   Fabrication of 5 nm linewidth and 14 nm pitch features by nanoimprint lithography [J].
Austin, MD ;
Ge, HX ;
Wu, W ;
Li, MT ;
Yu, ZN ;
Wasserman, D ;
Lyon, SA ;
Chou, SY .
APPLIED PHYSICS LETTERS, 2004, 84 (26) :5299-5301
[3]  
Bergman T.L., 2011, Fundamentals of Heat and Mass Transfer, P58
[4]   Wavelet-based statistical signal processing using hidden Markov models [J].
Crouse, MS ;
Nowak, RD ;
Baraniuk, RG .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (04) :886-902
[5]   Chemical mapping of the distribution of viruses into infected bacteria with a photothermal method [J].
Dazzi, A. ;
Prazeres, R. ;
Glotin, F. ;
Ortega, J. M. ;
Al-Sawaftah, M. ;
de Frutos, M. .
ULTRAMICROSCOPY, 2008, 108 (07) :635-641
[6]   Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor [J].
Dazzi, A ;
Prazeres, R ;
Glotin, E ;
Ortega, JM .
OPTICS LETTERS, 2005, 30 (18) :2388-2390
[7]   Theory of infrared nanospectroscopy by photothermal induced resonance [J].
Dazzi, A. ;
Glotin, F. ;
Carminati, R. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (12)
[8]   AFM-IR: Combining Atomic Force Microscopy and Infrared Spectroscopy for Nanoscale Chemical Characterization [J].
Dazzi, Alexandre ;
Prater, Craig B. ;
Hu, Qichi ;
Chase, D. Bruce ;
Rabolt, John F. ;
Marcott, Curtis .
APPLIED SPECTROSCOPY, 2012, 66 (12) :1365-1384
[9]   Thermal radiation scanning tunnelling microscopy [J].
De Wilde, Yannick ;
Formanek, Florian ;
Carminati, Remi ;
Gralak, Boris ;
Lemoine, Paul-Arthur ;
Joulain, Karl ;
Mulet, Jean-Philippe ;
Chen, Yong ;
Greffet, Jean-Jacques .
NATURE, 2006, 444 (7120) :740-743
[10]   Nanometer-Scale Infrared Spectroscopy of Heterogeneous Polymer Nanostructures Fabricated by Tip-Based Nanofabrication [J].
Felts, Jonathan R. ;
Kjoller, Kevin ;
Lo, Michael ;
Prater, Craig B. ;
King, William P. .
ACS NANO, 2012, 6 (09) :8015-8021