HIERARCHICAL A POSTERIORI ERROR ESTIMATORS FOR THE MIMETIC DISCRETIZATION OF ELLIPTIC PROBLEMS

被引:24
作者
Antonietti, Paola F. [1 ]
da Veiga, Lourenco Beirao [2 ]
Lovadina, Carlo [3 ]
Verani, Marco [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX, I-20133 Milan, Italy
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
mimetic finite difference method; a posteriori error estimators; adaptive algorithms; FINITE-DIFFERENCE METHODS; POLYHEDRAL MESHES; DIFFUSION-PROBLEMS; CONVERGENCE; EQUATIONS; APPROXIMATION; ELEMENTS;
D O I
10.1137/120873157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an a posteriori error estimate of hierarchical type for the mimetic discretization of elliptic problems. Under a saturation assumption, the global reliability and efficiency of the proposed a posteriori estimator are proved. Several numerical experiments assess the actual performance of the local error indicators in driving adaptive mesh refinement algorithms based on different marking strategies. Finally, we analyze and test an inexpensive variant of the proposed error estimator which drastically reduces the overall computational cost of the adaptive procedures.
引用
收藏
页码:654 / 675
页数:22
相关论文
共 38 条
[31]  
Nochetto RH, 2009, MULTISCALE, NONLINEAR AND ADAPTIVE APPROXIMATION, P409, DOI 10.1007/978-3-642-03413-8_12
[32]  
Stevenson R, 2009, MULTISCALE, NONLINEAR AND ADAPTIVE APPROXIMATION, P543, DOI 10.1007/978-3-642-03413-8_13
[33]   Conforming polygonal finite elements [J].
Sukumar, N ;
Tabarraei, A .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2004, 61 (12) :2045-2066
[34]   Convergent adaptive finite elements for the nonlinear Laplacian [J].
Veeser, A .
NUMERISCHE MATHEMATIK, 2002, 92 (04) :743-770
[35]  
Verf?rth R., 1996, REV POSTERIORI ERROR
[36]   An extension of the discrete variational method to nonuniform grids [J].
Yaguchi, Takaharu ;
Matsuo, Takayasu ;
Sugihara, Masaaki .
JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (11) :4382-4423
[37]   THE HIERARCHICAL CONCEPT IN FINITE-ELEMENT ANALYSIS [J].
ZIENKIEWICZ, OC ;
GAGO, JPD ;
KELLY, DW .
COMPUTERS & STRUCTURES, 1983, 16 (1-4) :53-65
[38]   Hierarchical error estimates for the energy functional in obstacle problems [J].
Zou, Qingsong ;
Veeser, Andreas ;
Kornhuber, Ralf ;
Graeser, Carsten .
NUMERISCHE MATHEMATIK, 2011, 117 (04) :653-677