HIERARCHICAL A POSTERIORI ERROR ESTIMATORS FOR THE MIMETIC DISCRETIZATION OF ELLIPTIC PROBLEMS

被引:24
作者
Antonietti, Paola F. [1 ]
da Veiga, Lourenco Beirao [2 ]
Lovadina, Carlo [3 ]
Verani, Marco [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat, MOX, I-20133 Milan, Italy
[2] Univ Milan, Dipartimento Matemat, I-20133 Milan, Italy
[3] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
mimetic finite difference method; a posteriori error estimators; adaptive algorithms; FINITE-DIFFERENCE METHODS; POLYHEDRAL MESHES; DIFFUSION-PROBLEMS; CONVERGENCE; EQUATIONS; APPROXIMATION; ELEMENTS;
D O I
10.1137/120873157
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present an a posteriori error estimate of hierarchical type for the mimetic discretization of elliptic problems. Under a saturation assumption, the global reliability and efficiency of the proposed a posteriori estimator are proved. Several numerical experiments assess the actual performance of the local error indicators in driving adaptive mesh refinement algorithms based on different marking strategies. Finally, we analyze and test an inexpensive variant of the proposed error estimator which drastically reduces the overall computational cost of the adaptive procedures.
引用
收藏
页码:654 / 675
页数:22
相关论文
共 38 条
[1]  
Ainsworth M., 2000, PURE APPL MATH NEW Y
[2]  
[Anonymous], 2001, FINITE ELEMENT METHO
[3]  
Antonietti P. F., 2012, J SCI COMPU IN PRESS
[4]  
Antonietti P. F., MATH COMP IN PRESS
[5]  
BANK RE, 1985, MATH COMPUT, V44, P283, DOI 10.1090/S0025-5718-1985-0777265-X
[6]   Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals [J].
Berndt, M ;
Lipnikov, K ;
Shashkov, M ;
Wheeler, MF ;
Yotov, I .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (04) :1728-1749
[7]   A posteriori error estimates for elliptic problems in two and three space dimensions [J].
Bornemann, FA ;
Erdmann, B ;
Kornhuber, R .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1188-1204
[8]  
Brenner S. C., 2007, MATH THEORY FINITE E
[9]   Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02) :275-297
[10]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896