Periodic Solutions for Second Order Equations with the Scalar p-Laplacian and Nonsmooth Potential

被引:1
作者
Papageorgiou, Nikolaos S. [1 ]
Yannakakis, Nikolaos [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2004年 / 47卷 / 01期
关键词
Nonsmooth critical point theory; Locally Lipschitz function; Subdifferential; Linking sets; Linking theorem; Nonsmooth C-condition; p-Laplacian; Eigenvalues;
D O I
10.1619/fesi.47.107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we examine a scalar equation driven by the p-Laplacian and having periodic boundary conditions and a nonsmooth potential j(t, x). We assume that asymptotically at +/-infinity, the quantity pj(t,x)/vertical bar x vertical bar(p) lies between the first two eigenvalues lambda(0) = 0 and lambda(1), with possible interaction (resonance) with lambda(0) = 0. We show that the equation has a solution. The method of proof uses the nonsmooth Critical Point Theory and in particular a recently established version of the Linking Theorem.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 50 条
[41]   Nontrivial solutions of superlinear p-Laplacian equations [J].
Fang, Fei ;
Liu, Shibo .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 351 (01) :138-146
[42]   On the existence of multiple periodic solutions for equations driven by the p-Laplacian and with a non-smooth potential [J].
Gasinski, L ;
Papageorgiou, NS .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2003, 46 :229-249
[43]   Existence and subharmonicity of solutions for nonsmooth p-Laplacian systems [J].
Ning, Yan ;
Lu, Daowei ;
Mao, Anmin .
AIMS MATHEMATICS, 2021, 6 (10) :10947-10963
[44]   Periodic solutions for a class of reaction-diffusion equations with p-Laplacian [J].
Pang, Peter Y. H. ;
Wang, Yifu ;
Yin, Jingxue .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) :323-331
[45]   Positive periodic solutions for p-Laplacian neutral differential equations with a singularity [J].
Li, Zhiyan ;
Kong, Fanchao .
BOUNDARY VALUE PROBLEMS, 2017,
[46]   Homoclinic orbits for second order nonlinear p-Laplacian difference equations [J].
X. Deng ;
X. Liu ;
H. Shi ;
T. Zhou .
Journal of Contemporary Mathematical Analysis, 2011, 46 :172-182
[47]   Homoclinic Orbits for Second Order Nonlinear p-Laplacian Difference Equations [J].
Deng, X. ;
Liu, X. ;
Shi, H. ;
Zhou, T. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2011, 46 (03) :172-182
[48]   EXISTENCE OF HOMOCLINIC SOLUTIONS TO NONAUTONOMOUS SECOND-ORDER p-LAPLACIAN SYSTEM WITH A COERCIVE POTENTIAL [J].
Yun Xin ;
Zhibo Cheng .
Annals of Applied Mathematics, 2015, 31 (03) :345-353
[49]   EXISTENCE OF GLOBAL SOLUTIONS FOR SYSTEMS OF SECOND-ORDER FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH p-LAPLACIAN [J].
Bartusek, Miroslav ;
Medved, Milan .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
[50]   Existence and multiplicity of solutions for nonlinear periodic problems with the scalar p-Laplacian and double resonance [J].
Papageorgiou, Evgenia H. ;
Papageorgiou, Nikolaos S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (10) :3678-3702