Periodic Solutions for Second Order Equations with the Scalar p-Laplacian and Nonsmooth Potential

被引:1
作者
Papageorgiou, Nikolaos S. [1 ]
Yannakakis, Nikolaos [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2004年 / 47卷 / 01期
关键词
Nonsmooth critical point theory; Locally Lipschitz function; Subdifferential; Linking sets; Linking theorem; Nonsmooth C-condition; p-Laplacian; Eigenvalues;
D O I
10.1619/fesi.47.107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we examine a scalar equation driven by the p-Laplacian and having periodic boundary conditions and a nonsmooth potential j(t, x). We assume that asymptotically at +/-infinity, the quantity pj(t,x)/vertical bar x vertical bar(p) lies between the first two eigenvalues lambda(0) = 0 and lambda(1), with possible interaction (resonance) with lambda(0) = 0. We show that the equation has a solution. The method of proof uses the nonsmooth Critical Point Theory and in particular a recently established version of the Linking Theorem.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 50 条
[21]   POSITIVE SOLUTIONS FOR THE PERIODIC SCALAR p-LAPLACIAN: EXISTENCE AND UNIQUENESS [J].
Kyritsi, Sophia Th. ;
Papageorgiou, Nikolaos S. .
TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (04) :1345-1361
[22]   PERIODIC SOLUTIONS TO DIFFERENTIAL EQUATIONS WITH A GENERALIZED P-LAPLACIAN [J].
Lipowski, Adam ;
Przeradzki, Bogdan ;
Szymanska-Debowska, Katarzyna .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2014, 19 (08) :2593-2601
[23]   Existence and multiple solutions for second-order p-Laplacian difference equations [J].
Shi, Haiping ;
Zhang, Yuanbiao .
ADVANCES IN DIFFERENCE EQUATIONS, 2017,
[24]   Existence of periodic solutions for a class of p-Laplacian equations [J].
Chang, Xiaojun ;
Qiao, Yu .
BOUNDARY VALUE PROBLEMS, 2013,
[25]   Periodic and subharmonic solutions for a class of second-order p-Laplacian Hamiltonian systems [J].
Hairong Lian ;
Dongli Wang ;
Zhanbing Bai ;
Ravi P Agarwal .
Boundary Value Problems, 2014
[26]   Periodic and subharmonic solutions for a class of second-order p-Laplacian Hamiltonian systems [J].
Lian, Hairong ;
Wang, Dongli ;
Bai, Zhanbing ;
Agarwal, Ravi P. .
BOUNDARY VALUE PROBLEMS, 2014,
[27]   Periodic solutions of non-autonomous second-order systems with a p-Laplacian [J].
Tian, Yu ;
Ge, Weigao .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (01) :192-203
[28]   Analysis of multiple periodic solutions for second-order p-Laplacian difference systems [J].
Zhao, Kaihong .
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2013, 43 (13) :349-356
[29]   Periodic and subharmonic solutions for 2nth-order p-Laplacian difference equations [J].
Liu, X. ;
Zhang, Y. ;
Shi, H. .
JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2014, 49 (05) :223-231
[30]   Periodic and subharmonic solutions for 2nth-order p-Laplacian difference equations [J].
X. Liu ;
Y. Zhang ;
H. Shi .
Journal of Contemporary Mathematical Analysis, 2014, 49 :223-231