Periodic Solutions for Second Order Equations with the Scalar p-Laplacian and Nonsmooth Potential

被引:1
|
作者
Papageorgiou, Nikolaos S. [1 ]
Yannakakis, Nikolaos [1 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Athens 15780, Greece
来源
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA | 2004年 / 47卷 / 01期
关键词
Nonsmooth critical point theory; Locally Lipschitz function; Subdifferential; Linking sets; Linking theorem; Nonsmooth C-condition; p-Laplacian; Eigenvalues;
D O I
10.1619/fesi.47.107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we examine a scalar equation driven by the p-Laplacian and having periodic boundary conditions and a nonsmooth potential j(t, x). We assume that asymptotically at +/-infinity, the quantity pj(t,x)/vertical bar x vertical bar(p) lies between the first two eigenvalues lambda(0) = 0 and lambda(1), with possible interaction (resonance) with lambda(0) = 0. We show that the equation has a solution. The method of proof uses the nonsmooth Critical Point Theory and in particular a recently established version of the Linking Theorem.
引用
收藏
页码:107 / 117
页数:11
相关论文
共 50 条
  • [1] Existence and multiplicity of solutions for second order periodic systems with the p-Laplacian and a nonsmooth potential
    Leszek Gasiński
    Nikolaos S. Papageorgiou
    Monatshefte für Mathematik, 2009, 158 : 121 - 150
  • [2] Existence and multiplicity of solutions for second order periodic systems with the p-Laplacian and a nonsmooth potential
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    MONATSHEFTE FUR MATHEMATIK, 2009, 158 (02): : 121 - 150
  • [3] Periodic solutions for second order differential inclusions with the scalar p-Laplacian
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) : 913 - 929
  • [4] Periodic and subharmonic solutions for second order p-Laplacian difference equations
    Liu, Xia
    Zhang, Yuanbiao
    Zheng, Bo
    Shi, Haiping
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2011, 121 (04): : 457 - 468
  • [5] Resonant nonlinear periodic problems with the scalar p-Laplacian and a nonsmooth potential
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2006, 27 (02) : 269 - 288
  • [6] Existence of periodic solutions of second order nonlinear p-Laplacian difference equations
    Liu, X.
    Shi, H. P.
    Zhang, Y. B.
    ACTA MATHEMATICA HUNGARICA, 2011, 133 (1-2) : 148 - 165
  • [7] Existence of periodic solutions of second order nonlinear p-Laplacian difference equations
    X. Liu
    H. P. Shi
    Y. B. Zhang
    Acta Mathematica Hungarica, 2011, 133 : 148 - 165
  • [8] EXISTENCE OF PERIODIC SOLUTIONS FOR TWO CLASSES OF SECOND ORDER P-LAPLACIAN DIFFERENTIAL EQUATIONS
    Han, Xiaoling
    Yang, Hujun
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (01): : 81 - 94
  • [9] Existence of periodic and subharmonic solutions for second-order p-Laplacian difference equations
    Chen, Peng
    Fang, Hui
    ADVANCES IN DIFFERENCE EQUATIONS, 2007, 2007 (1)
  • [10] On periodic solutions of second-order partial difference equations involving p-Laplacian
    Li, Dan
    Long, Yuhua
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2025, 17 (01): : 128 - 144