High bandwidth and fast tracking of desired trajectories are eagerly required in various applications that use piezoelectric nanopositioning stages, especially in atomic force microscopes where the vibration stemming from lightly damped modes of stages is a challenging control problem. In this study, a bandwidth-enhanced positive acceleration, velocity, and position feedback damping controller is presented to achieve the tracking bandwidth exceeding the first resonant frequency through using a novel pole-shift method. The stability of the positive feedback damped loop is examined by a mixed passivity, small-gain approach, and Nyquist theorem framework. Also, in conjunction with a proportional-integral tracking controller, robust stability is addressed for load uncertainties. Experimental application to a piezoelectric nanopositioning stage demonstrates that a closed-loop bandwidth of 282.5 Hz is achieved, which exceeds the dominating resonance of the stage at 210 Hz. The achieved bandwidth is 1.35 times larger than the dominating resonance, which is a competitive result among most existing damping control approaches. Comparative tracking results verify the effectiveness of the proposed control scheme on the suppression of low-frequency hysteresis and tracking performance of high-speed triangular waves under load variations.