CENTRES AND LIMIT CYCLES FOR AN EXTENDED KUKLES SYSTEM

被引:0
作者
Hill, Joe M. [1 ]
Lloyd, Noel G. [1 ]
Pearson, Jane M. [1 ]
机构
[1] Aberystwyth Univ, Inst Math & Phys Sci, Ceredigion SY23 3BZ, Wales
关键词
Nonlinear differential equations; invariant curves; limit cycles;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present conditions for the origin to be a centre for a class of cubic systems. Some of the centre conditions are determined by finding complicated invariant functions. We also investigate the coexistence of fine foci and the simultaneous bifurcation of limit cycles from them.
引用
收藏
页数:23
相关论文
共 16 条
[1]  
Albarakati WA., 2000, Elec. J. Differ. Equ, V2000, P1
[2]   ON THE PAPER OF JIN AND WANG CONCERNING THE CONDITIONS FOR A CENTER IN CERTAIN CUBIC SYSTEMS [J].
CHRISTOPHER, CJ ;
LLOYD, NG .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 :5-12
[3]  
Christopher CJ., 1995, Nonlinear World, V2, P459
[4]   SUBRESULTANTS AND REDUCED POLYNOMIAL REMAINDER SEQUENCES [J].
COLLINS, GE .
JOURNAL OF THE ACM, 1967, 14 (01) :128-&
[5]  
DARBOUX G., 1878, B SCI MATH ASTRONOMI, V1, P60
[6]  
DARBOUX G, 1878, B SCI MATH ASTRON, V2, P123
[7]  
Darboux G., 1878, B SCI MATH, V2, P151
[8]   Algorithmic derivation of isochronicity conditions [J].
Hill, J. M. ;
Lloyd, N. G. ;
Pearson, J. M. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (01) :52-69
[9]  
Hill J. M., 2007, PROPERTIES PRE UNPUB
[10]   COMPUTING CENTER CONDITIONS FOR CERTAIN CUBIC SYSTEMS [J].
LLOYD, NG ;
PEARSON, JM .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1992, 40 (03) :323-336