Additive Manufactured Magnesium-Based Scaffolds for Tissue Engineering

被引:27
作者
Antoniac, Iulian [1 ,2 ]
Manescu , Veronica [1 ,3 ]
Paltanea, Gheorghe [3 ]
Antoniac, Aurora [1 ]
Nemoianu, Iosif Vasile [3 ]
Petrescu, Mircea Ionut [1 ]
Dura, Horatiu [4 ]
Bodog, Alin Danut [5 ]
机构
[1] Univ Politehn Bucuresti, Fac Mat Sci & Engn, 313 Splaiul Independentei, Bucharest 060042, Romania
[2] Acad Romanian Scientists, 54 Splaiul Independentei, Bucharest 050094, Romania
[3] Univ Politehn Bucuresti, Fac Elect Engn, 313 Splaiul Independentei, Bucharest 060042, Romania
[4] Lucian Blaga Univ Sibiu, Fac Med, Sibiu 550169, Romania
[5] Univ Oradea, Fac Med & Pharm, 10 P-ta 1 December St, Oradea 410073, Romania
关键词
Mg-based scaffolds; tissue engineering; additive manufacturing; bone defect treatment; regenerative medicine; bioresorbable implants; computer-aided design; IN-VITRO DEGRADATION; MG-CA ALLOYS; NACL TEMPLATES RELATIONSHIP; OF-THE-ART; MECHANICAL-PROPERTIES; POROUS MAGNESIUM; BIODEGRADABLE MAGNESIUM; ORTHOPEDIC IMPLANTS; 3-DIMENSIONAL SCAFFOLDS; DENSIFICATION BEHAVIOR;
D O I
10.3390/ma15238693
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Additive manufacturing (AM) is an important technology that led to a high evolution in the manufacture of personalized implants adapted to the anatomical requirements of patients. Due to a worldwide graft shortage, synthetic scaffolds must be developed. Regarding this aspect, biodegradable materials such as magnesium and its alloys are a possible solution because the second surgery for implant removal is eliminated. Magnesium (Mg) exhibits mechanical properties, which are similar to human bone, biodegradability in human fluids, high biocompatibility, and increased ability to stimulate new bone formation. A current research trend consists of Mg-based scaffold design and manufacture using AM technologies. This review presents the importance of biodegradable implants in treating bone defects, the most used AM methods to produce Mg scaffolds based on powder metallurgy, AM-manufactured implants properties, and in vitro and in vivo analysis. Scaffold properties such as biodegradation, densification, mechanical properties, microstructure, and biocompatibility are presented with examples extracted from the recent literature. The challenges for AM-produced Mg implants by taking into account the available literature are also discussed.
引用
收藏
页数:33
相关论文
共 165 条
[1]  
3dinsider, ALL SLS PRINTING ADV
[2]   Review of selective laser melting of magnesium alloys: advantages, microstructure and mechanical characterizations, defects, challenges, and applications [J].
Ahmadi, M. ;
Tabary, S. A. A. Bozorgnia ;
Rahmatabadi, D. ;
Ebrahimi, M. S. ;
Abrinia, K. ;
Hashemi, R. .
JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2022, 19 :1537-1562
[3]   Biodegradable magnesium-based biomaterials: An overview of challenges and opportunities [J].
Amukarimi, Shukufe ;
Mozafari, Masoud .
MEDCOMM, 2021, 2 (02) :123-144
[4]   Magnesium-Based Alloys Used in Orthopedic Surgery [J].
Antoniac, Iulian ;
Miculescu, Marian ;
Manescu , Veronica ;
Stere, Alexandru ;
Quan, Pham Hong ;
Paltanea, Gheorghe ;
Robu, Alina ;
Earar, Kamel .
MATERIALS, 2022, 15 (03)
[5]   Comparative Assessment of In Vitro and In Vivo Biodegradation of Mg-1Ca Magnesium Alloys for Orthopedic Applications [J].
Antoniac, Iulian ;
Adam, Razvan ;
Bita, Ana ;
Miculescu, Marian ;
Trante, Octavian ;
Petrescu, Ionut Mircea ;
Pogarasteanu, Mark .
MATERIALS, 2021, 14 (01) :1-20
[6]   In vitro characterization of novel nanostructured collagen-hydroxyapatite composite scaffolds doped with magnesium with improved biodegradation rate for hard tissue regeneration [J].
Antoniac, Iulian, V ;
Antoniac, Aurora ;
Vasile, Eugeniu ;
Tecu, Camelia ;
Fosca, Marco ;
Yankova, Viktoriya G. ;
Rau, Julietta, V .
BIOACTIVE MATERIALS, 2021, 6 (10) :3383-3395
[7]   Laser additive manufacturing of biodegradable magnesium alloy WE43: A detailed microstructure analysis [J].
Baer, Florian ;
Berger, Leopold ;
Jauer, Lucas ;
Kurtuldu, Gueven ;
Schaeublin, Robin ;
Schleifenbaum, Johannes H. ;
Loeffler, Joerg F. .
ACTA BIOMATERIALIA, 2019, 98 :36-49
[8]   Biomedical production of implants by additive electro-chemical and physical processes [J].
Bartolo, Paulo ;
Kruth, Jean-Pierre ;
Silva, Jorge ;
Levy, Gideon ;
Malshe, Ajay ;
Rajurkar, Kamlakar ;
Mitsuishi, Mamoru ;
Ciurana, Joaquim ;
Leu, Ming .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2012, 61 (02) :635-655
[9]   Silk scaffolds in bone tissue engineering: An overview [J].
Bhattacharjee, Promita ;
Kundu, Banani ;
Naskar, Deboki ;
Kim, Hae-Won ;
Maiti, Tapas K. ;
Bhattacharya, Debasis ;
Kundu, Subhas C. .
ACTA BIOMATERIALIA, 2017, 63 :1-17
[10]  
Bita AI, 2016, UNIV POLITEH BUCHAR, V78, P173