Besov regularity for interface problems

被引:0
|
作者
Dahlke, S [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1999年 / 79卷 / 06期
关键词
interface problems; adaptive methods; nonlinear approximation; Besov spaces; wavelets;
D O I
10.1002/(SICI)1521-4001(199906)79:6<383::AID-ZAMM383>3.0.CO;2-B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Besov regularity of Me solutions to interface problems in a sector S of the unit disc in R-2 We investigate the smoothness of the solutions as measured in the specific scale B-tau(S)(L-tau(S)), 1/tau = s/2 + 1/p, of Besov spaces which determines the order of approximation that can be achieved by adaptive and nonlinear numerical schemes. The proofs are based on representations of the solution spaces which were derived by KELLOGG [15] and on characterizations of Besov spaces by wavelet expansions.
引用
收藏
页码:383 / 388
页数:6
相关论文
共 50 条
  • [41] On Besov regularity of solutions to nonlinear elliptic partial differential equations
    Dahlke, Stephan
    Hansen, Markus
    Schneider, Cornelia
    Sickel, Winfried
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 192
  • [42] WEIGHTED NORM INEQUALITIES FOR MULTILINEAR FOURIER MULTIPLIERS WITH CRITICAL BESOV REGULARITY
    Fujita, Mai
    Tomita, Naohito
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (02) : 555 - 569
  • [43] MAXIMAL REGULARITY FOR FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN BESOV SPACES
    Aparicio, Rafael
    Keyantuo, Valentin
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2025, 24 (03) : 427 - 458
  • [44] Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains
    Cioica, Petru A.
    Dahlke, Stephan
    Kinzel, Stefan
    Lindner, Felix
    Raasch, Thorsten
    Ritter, Klaus
    Schilling, Rene L.
    STUDIA MATHEMATICA, 2011, 207 (03) : 197 - 234
  • [45] Besov regularity for the stationary Navier-Stokes equation on bounded Lipschitz domains
    Eckhardt, Frank
    Cioica-Licht, Petru A.
    Dahlke, Stephan
    APPLICABLE ANALYSIS, 2018, 97 (03) : 466 - 485
  • [46] On the regularity criterion for three-dimensional micropolar fluid flows in Besov spaces
    Dong, Bo-Qing
    Zhang, Wenliang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (07) : 2334 - 2341
  • [47] The Holder and the Besov regularity of the density for the solution of a parabolic stochastic partial differential equation
    Morien, PL
    BERNOULLI, 1999, 5 (02) : 275 - 298
  • [48] Homeomorphisms acting on Besov and Triebel-Lizorkin spaces of local regularity ψ(t)
    Hartzstein, SI
    Viviani, BE
    COLLECTANEA MATHEMATICA, 2005, 56 (01) : 27 - 45
  • [49] Almost Diagonal Matrices and Besov-Type Spaces Based on Wavelet Expansions
    Markus Weimar
    Journal of Fourier Analysis and Applications, 2016, 22 : 251 - 284
  • [50] Almost Diagonal Matrices and Besov-Type Spaces Based on Wavelet Expansions
    Weimar, Markus
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (02) : 251 - 284