Besov regularity for interface problems

被引:0
|
作者
Dahlke, S [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1999年 / 79卷 / 06期
关键词
interface problems; adaptive methods; nonlinear approximation; Besov spaces; wavelets;
D O I
10.1002/(SICI)1521-4001(199906)79:6<383::AID-ZAMM383>3.0.CO;2-B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Besov regularity of Me solutions to interface problems in a sector S of the unit disc in R-2 We investigate the smoothness of the solutions as measured in the specific scale B-tau(S)(L-tau(S)), 1/tau = s/2 + 1/p, of Besov spaces which determines the order of approximation that can be achieved by adaptive and nonlinear numerical schemes. The proofs are based on representations of the solution spaces which were derived by KELLOGG [15] and on characterizations of Besov spaces by wavelet expansions.
引用
收藏
页码:383 / 388
页数:6
相关论文
共 50 条
  • [31] Besov regularity in non-linear generalized functions
    Pilipovic, Stevan
    Scarpalezos, Dimitris
    Vindas, Jasson
    MONATSHEFTE FUR MATHEMATIK, 2023, 201 (02): : 483 - 498
  • [32] Besov regularity of solutions to the p-Poisson equation
    Dahlke, Stephan
    Diening, Lars
    Hartmann, Christoph
    Scharf, Benjamin
    Weimar, Markus
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 : 298 - 329
  • [33] Wavelet analysis of the Besov regularity of Levy white noise
    Aziznejad, Shayan
    Fageot, Julien
    ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25 : 1 - 38
  • [34] Besov regularity for solutions of p-harmonic equations
    Clop, Albert
    Giova, Raffaella
    di Napoli, Antonia Passarelli
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 762 - 778
  • [35] Sobolev meets Besov: Regularity for the Poisson equation with Dirichlet, Neumann and mixed boundary values
    Schneider, Cornelia
    Szemenyei, Flora O.
    ANALYSIS AND APPLICATIONS, 2022, 20 (05) : 989 - 1023
  • [36] On Besov regularity of solutions to nonlinear elliptic partial differential equations
    Stephan Dahlke
    Winfried Sickel
    Revista Matemática Complutense, 2013, 26 : 115 - 145
  • [37] On Gevrey regularity of the supercritical SQG equation in critical Besov spaces
    Biswas, Animikh
    Martinez, Vincent R.
    Silva, Prabath
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (10) : 3083 - 3119
  • [38] On Besov regularity of solutions to nonlinear elliptic partial differential equations
    Dahlke, Stephan
    Sickel, Winfried
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 115 - 145
  • [39] ON TIME-DEPENDENT BESOV VECTOR FIELDS AND THE REGULARITY OF THEIR FLOWS
    Nenning, David Nicolas
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 623 - 638
  • [40] Besov regularity for the generalized local time of the indefinite Skorohod integral
    Liang, Zongxia
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2007, 43 (01): : 77 - 86