Besov regularity for interface problems

被引:0
|
作者
Dahlke, S [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1999年 / 79卷 / 06期
关键词
interface problems; adaptive methods; nonlinear approximation; Besov spaces; wavelets;
D O I
10.1002/(SICI)1521-4001(199906)79:6<383::AID-ZAMM383>3.0.CO;2-B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Besov regularity of Me solutions to interface problems in a sector S of the unit disc in R-2 We investigate the smoothness of the solutions as measured in the specific scale B-tau(S)(L-tau(S)), 1/tau = s/2 + 1/p, of Besov spaces which determines the order of approximation that can be achieved by adaptive and nonlinear numerical schemes. The proofs are based on representations of the solution spaces which were derived by KELLOGG [15] and on characterizations of Besov spaces by wavelet expansions.
引用
收藏
页码:383 / 388
页数:6
相关论文
共 50 条
  • [21] On the Limit Regularity in Sobolev and Besov Scales Related to Approximation Theory
    Petru A. Cioica-Licht
    Markus Weimar
    Journal of Fourier Analysis and Applications, 2020, 26
  • [22] Besov regularity for the Stokes and the Navier-Stokes system in polyhedral domains
    Eckhardt, Frank
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2015, 95 (11): : 1161 - 1173
  • [23] Besov regularity theory for stationary electrorheological fluids
    Ma, Lingwei
    Zhang, Zhenqiu
    Xiong, Qi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 343 : 790 - 815
  • [24] Improvement of Besov Regularity for Solutions of the Fractional Laplacian
    Hugo Aimar
    Gastón Beltritti
    Ivana Gómez
    Constructive Approximation, 2015, 41 : 219 - 229
  • [25] Improvement of Besov Regularity for Solutions of the Fractional Laplacian
    Aimar, Hugo
    Beltritti, Gaston
    Gomez, Ivana
    CONSTRUCTIVE APPROXIMATION, 2015, 41 (02) : 219 - 229
  • [26] On the pointwise regularity of functions in critical Besov spaces
    Jaffard, S
    Meyer, Y
    JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (02) : 415 - 434
  • [27] Besov regularity for a class of singular or degenerate elliptic equations
    Ambrosio, Pasquale
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 505 (02)
  • [28] Besov regularity in non-linear generalized functions
    Stevan Pilipović
    Dimitris Scarpalézos
    Jasson Vindas
    Monatshefte für Mathematik, 2023, 201 : 483 - 498
  • [29] Besov regularity for solutions of elliptic equations with variable exponents
    Giova, Raffaella
    MATHEMATISCHE NACHRICHTEN, 2020, 293 (08) : 1459 - 1480
  • [30] Regularity of stopping times of diffusion processes in Besov spaces
    Zhang, XC
    STUDIA MATHEMATICA, 2002, 151 (01) : 23 - 29