Besov regularity for interface problems

被引:0
|
作者
Dahlke, S [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Geometrie & Prakt Math, D-52056 Aachen, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 1999年 / 79卷 / 06期
关键词
interface problems; adaptive methods; nonlinear approximation; Besov spaces; wavelets;
D O I
10.1002/(SICI)1521-4001(199906)79:6<383::AID-ZAMM383>3.0.CO;2-B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the Besov regularity of Me solutions to interface problems in a sector S of the unit disc in R-2 We investigate the smoothness of the solutions as measured in the specific scale B-tau(S)(L-tau(S)), 1/tau = s/2 + 1/p, of Besov spaces which determines the order of approximation that can be achieved by adaptive and nonlinear numerical schemes. The proofs are based on representations of the solution spaces which were derived by KELLOGG [15] and on characterizations of Besov spaces by wavelet expansions.
引用
收藏
页码:383 / 388
页数:6
相关论文
共 50 条