Twisted K-Homology and Group-Valued Moment Maps

被引:21
作者
Meinrenken, E. [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
QUANTIZATION; FUSION; BUNDLES; SPINORS; SPACES; INDEX;
D O I
10.1093/imrn/rnr197
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a compact, simply connected Lie group. We develop a 'quantization functor' from prequantized quasi-Hamiltonian G-spaces (M,omega,Phi) at level k to the fusion ring (Verlinde algebra) R-k(G). The quantization Q(M) epsilon R-k(G) is defined as a push-forward in twisted equivariant K-homology. It may be computed by a fixed point formula, similar to the equivariant index theorem for Spin(c)-Dirac operators. Using the formula, we calculate Q(M) in several examples.
引用
收藏
页码:4563 / 4618
页数:56
相关论文
共 50 条
  • [1] Dirac Structures and Dixmier-Douady Bundles
    Alekseev, A.
    Meinrenken, E.
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2012, 2012 (04) : 904 - 956
  • [2] Alekseev A, 2009, ASTERISQUE, P131
  • [3] Duistermaat-Heckman measures and moduli spaces of flat bundles over surfaces
    Alekseev, A
    Meinrenken, E
    Woodward, C
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (01) : 1 - 31
  • [4] Alekseev A, 1998, J DIFFER GEOM, V48, P445
  • [5] Alekseev A., 2001, J. Symplectic Geom, V1, P1, DOI [10.4310/JSG.2001.v1.n1.a1, DOI 10.4310/JSG.2001.V1.N1.A1]
  • [6] [Anonymous], 2000, OXFORD MATH MONOGRAP
  • [7] [Anonymous], 1992, GRUNDLEHREN MATH WIS
  • [8] [Anonymous], 2009, NOT AM MATH SOC
  • [9] Atiyah M., 2004, Ukr. Math. Bull, V1, P291
  • [10] Atiyah M., 1990, The Geometry and Physics of Knots