Non-Markovian dynamics of a qubit

被引:175
作者
Maniscalco, S [1 ]
Petruccione, F
机构
[1] Univ Turku, Dept Phys, FI-20014 Turku, Finland
[2] Univ KwaZulu Natal, Sch Phys, ZA-4041 Durban, South Africa
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 01期
关键词
29;
D O I
10.1103/PhysRevA.73.012111
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we investigate the non-Markovian dynamics of a qubit by comparing two generalized master equations with memory. In the case of a thermal bath, we derive the solution of the recently proposed post-Markovian master equation [A. Shabani and D. A. Lidar, Phys. Rev. A 71, 020101(R) (2005)] and we study the dynamics for an exponentially decaying memory kernel. We compare the solution of the post-Markovian master equation with the solution of the typical memory kernel master equation. Our results lead to a new physical interpretation of the reservoir correlation function and bring to light the limits of usability of master equations with memory for the system under consideration.
引用
收藏
页数:8
相关论文
共 29 条
[1]   Self-consistent non-Markovian theory of a quantum-state evolution for quantum-information processing [J].
Ahn, D ;
Lee, J ;
Kim, MS ;
Hwang, SW .
PHYSICAL REVIEW A, 2002, 66 (01) :4
[2]   Optimal strategy for a single-qubit gate and the trade-off between opposite types of decoherence [J].
Alicki, R ;
Horodecki, M ;
Horodecki, P ;
Horodecki, R ;
Jacak, L ;
Machnikowski, P .
PHYSICAL REVIEW A, 2004, 70 (01) :010501-1
[3]   Dynamical description of quantum computing: Generic nonlocality of quantum noise [J].
Alicki, R ;
Horodecki, M ;
Horodecki, P ;
Horodecki, R .
PHYSICAL REVIEW A, 2002, 65 (06) :11
[4]  
ALIFERIS P, QUANTPH0504218
[5]  
Barnett S., 1997, Methods of Theoretical Quantum Optics
[6]   Hazards of reservoir memory [J].
Barnett, SM ;
Stenholm, S .
PHYSICAL REVIEW A, 2001, 64 (03) :5
[7]  
Breuer H.-P., 2002, THEORY OPEN QUANTUM
[8]   Genuine quantum trajectories for non-Markovian processes [J].
Breuer, HP .
PHYSICAL REVIEW A, 2004, 70 (01) :012106-1
[9]   QUANTUM OPTICAL MASTER-EQUATIONS - THE USE OF DAMPING BASES [J].
BRIEGEL, HJ ;
ENGLERT, BG .
PHYSICAL REVIEW A, 1993, 47 (04) :3311-3329
[10]   Stochastic representation of a class of non-Markovian completely positive evolutions [J].
Budini, AA .
PHYSICAL REVIEW A, 2004, 69 (04) :042107-1