Right Ventricle Segmentation in Short-Axis MRI Using a Shape Constrained Dense Connected U-Net

被引:11
作者
Yang, Hao [1 ]
Liu, Zexiong [1 ]
Yang, Xuan [1 ]
机构
[1] Shenzhen Univ, Coll Comp Sci & Software Engn, Shenzhen, Guangdong, Peoples R China
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT II | 2019年 / 11765卷
基金
中国国家自然科学基金;
关键词
RV segmentation; Convoluational neural network; Shape constraint; Short-axis MRI; CARDIAC MRI; AUTOMATIC SEGMENTATION;
D O I
10.1007/978-3-030-32245-8_59
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation of right ventricle (RV) in short-axis MRI is an essential step for evaluating the structure and function of RV. In this paper, a shape constrained deep learning network based on dense connectivity and dilated convolutions is proposed, which aims to strengthen feature propagation and have more diversified features through dense connections and skip connections. In the meantime, dilated convolution is used to expand the receptive fields and enhance the connectivity of segmentation results. The shape constraint of RV is introduced into the loss function to improve the prediction accuracy. Transfer learning is employed to strengthen the generalization of the network to the RV shape constraint. Finally, post-processing is performed by analysing boundary curvature of segmentation results and shape correlation of endocardium and epicardium of RV. Our network is validated on the MICCAI2012 public dataset, and the evaluation results show that our network outperforms the state-of-the-art methods in several evaluation metrics.
引用
收藏
页码:532 / 540
页数:9
相关论文
共 13 条
  • [1] [Anonymous], 2016, FULLY CONVOLUTIONAL
  • [2] Automatic segmentation of the right ventricle from cardiac MRI using a learning-based approach
    Avendi, Michael R.
    Kheradvar, Arash
    Jafarkhani, Hamid
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (06) : 2439 - 2448
  • [3] Duan M, 2018, INT CONF SIM SEMI PR, P258, DOI 10.1109/SISPAD.2018.8551710
  • [4] Local Motion Intensity Clustering (LMIC) Mode for Segmentation of Right Ventricle in Cardiac MRI Images
    Guo, Zengzhi
    Tan, Wenjun
    Wang, Lu
    Xu, Lisheng
    Wang, Xinhui
    Yang, Benqiang
    Yao, Yudong
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (02) : 723 - 730
  • [5] Luo GN, 2016, COMPUT CARDIOL CONF, V43, P485
  • [6] Right ventricle segmentation from cardiac MRI: A collation study
    Petitjean, Caroline
    Zuluaga, Maria A.
    Bai, Wenjia
    Dacher, Jean-Nicolas
    Grosgeorge, Damien
    Caudron, Jerome
    Ruan, Su
    Ben Ayed, Ismail
    Cardoso, M. Jorge
    Chen, Hsiang-Chou
    Jimenez-Carretero, Daniel
    Ledesma-Carbayo, Maria J.
    Davatzikos, Christos
    Doshi, Jimit
    Erus, Guray
    Maier, Oskar M. O.
    Nambakhsh, Cyrus M. S.
    Ou, Yangming
    Ourselin, Sebastien
    Peng, Chun-Wei
    Peters, Nicholas S.
    Peters, Terry M.
    Rajchi, Martin
    Rueckert, Daniel
    Santos, Andres
    Shi, Wenzhe
    Wang, Ching-Wei
    Wang, Haiyan
    Yuan, Jing
    [J]. MEDICAL IMAGE ANALYSIS, 2015, 19 (01) : 187 - 202
  • [7] A review of segmentation methods in short axis cardiac MR images
    Petitjean, Caroline
    Dacher, Jean-Nicolas
    [J]. MEDICAL IMAGE ANALYSIS, 2011, 15 (02) : 169 - 184
  • [8] Right ventricular segmentation in cardiac MRI with moving mesh correspondences
    Punithakumar, Kumaradevan
    Noga, Michelle
    Ben Ayed, Ismail
    Boulanger, Pierre
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2015, 43 : 15 - 25
  • [9] Fast, accurate, and fully automatic segmentation of the right ventricle in short-axis cardiac MRI
    Ringenberg, Jordan
    Deo, Makarand
    Devabhaktuni, Vijay
    Berenfeld, Omer
    Boyers, Pamela
    Gold, Jeffrey
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2014, 38 (03) : 190 - 201
  • [10] Ronneberger P., 2015, P MED IM COMP COMP A, P234, DOI DOI 10.1007/978-3-319-24574-4_28