Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy

被引:160
作者
Birtel, Johannes [1 ,2 ]
Eisenberger, Tobias [3 ]
Gliem, Martin [1 ,2 ]
Mueller, Philipp L. [1 ,2 ]
Herrmann, Philipp [1 ,2 ]
Betz, Christian [3 ]
Zahnleiter, Diana [3 ]
Neuhaus, Christine [3 ]
Lenzner, Steffen [3 ]
Holz, Frank G. [1 ,2 ]
Mangold, Elisabeth [4 ]
Bolz, Hanno J. [3 ,5 ]
Issa, Peter Charbel [1 ,2 ,6 ,7 ]
机构
[1] Univ Bonn, Dept Ophthalmol, Bonn, Germany
[2] Univ Bonn, Ctr Rare Dis Bonn ZSEB, Bonn, Germany
[3] Bioscientia Ctr Human Genet, Ingelheim, Germany
[4] Univ Bonn, Inst Human Genet, Bonn, Germany
[5] Univ Hosp Cologne, Inst Human Genet, Cologne, Germany
[6] Oxford Univ Hosp NHS Fdn Trust, Oxford Eye Hosp, Oxford, England
[7] Univ Oxford, Nuffield Lab Ophthalmol, Dept Clin Neurosci, Oxford, England
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
RECESSIVE RETINITIS-PIGMENTOSA; RETINAL DYSTROPHY; MOLECULAR DIAGNOSIS; NONSENSE MUTATION; CONE; RPGR; SPECTRUM; CRB1; IDENTIFICATION; LYMPHEDEMA;
D O I
10.1038/s41598-018-22096-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Macular and cone/cone-rod dystrophies (MD/CCRD) demonstrate a broad genetic and phenotypic heterogeneity, with retinal alterations solely or predominantly involving the central retina. Targeted next-generation sequencing (NGS) is an efficient diagnostic tool for identifying mutations in patient with retinitis pigmentosa, which shows similar genetic heterogeneity. To detect the genetic causes of disease in patients with MD/CCRD, we implemented a two-tier procedure consisting of Sanger sequencing and targeted NGS including genes associated with clinically overlapping conditions. Disease-causing mutations were identified in 74% of 251 consecutive MD/CCRD patients (33% of the variants were novel). Mutations in ABCA4, PRPH2 and BEST1 accounted for 57% of disease cases. Further mutations were identified in CDHR1, GUCY2D, PROM1, CRX, GUCA1A, CERKL, MT-TL1, KIF11, RP1L1, MERTK, RDH5, CDH3, C1QTNF5, CRB1, JAG1, DRAM2, POC1B, NPHP1 and RPGR. We provide detailed illustrations of rare phenotypes, including autofluorescence and optical coherence tomography imaging. Targeted NGS also identified six potential novel genotype-phenotype correlations for FAM161A, INPP5E, MERTK, FBLN5, SEMA4A and IMPDH1. Clinical reassessment of genetically unsolved patients revealed subgroups with similar retinal phenotype, indicating a common molecular disease cause in each subgroup.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Genetic characteristics of 234 Italian patients with macular and cone/cone-rod dystrophy
    Falsini, Benedetto
    Placidi, Giorgio
    De Siena, Elisa
    Chiurazzi, Pietro
    Minnella, Angelo Maria
    Savastano, Maria Cristina
    Ziccardi, Lucia
    Parisi, Vincenzo
    Iarossi, Giancarlo
    Percio, Marcella
    Pitekova, Barbora
    Marceddu, Giuseppe
    Maltese, Paolo Enrico
    Bertelli, Matteo
    SCIENTIFIC REPORTS, 2022, 12 (01):
  • [2] Quantitative Fundus Autofluorescence and Genetic Associations in Macular, Cone, and Cone-Rod Dystrophies
    Gliem, Martin
    Mueller, Philipp L.
    Birtel, Johannes
    Herrmann, Philipp
    McGuinness, Myra B.
    Holz, Frank G.
    Issa, Peter Charbel
    OPHTHALMOLOGY RETINA, 2020, 4 (07): : 737 - 749
  • [3] Novel GUCA1A Mutations Suggesting Possible Mechanisms of Pathogenesis in Cone, Cone-Rod, and Macular Dystrophy Patients
    Kamenarova, Kunka
    Corton, Marta
    Garcia-Sandoval, Blanca
    Fernandez-San Jose, Patricia
    Panchev, Valentin
    Avila-Fernandez, Almudena
    Isabel Lopez-Molina, Maria
    Chakarova, Christina
    Ayuso, Carmen
    Bhattacharya, Shomi S.
    BIOMED RESEARCH INTERNATIONAL, 2013, 2013
  • [4] Homozygosity Mapping in Patients with Cone-Rod Dystrophy: Novel Mutations and Clinical Characterizations
    Littink, Karin W.
    Koenekoop, Robert K.
    van den Born, L. Ingeborgh
    Collin, Rob W. J.
    Moruz, Luminita
    Veltman, Joris A.
    Roosing, Susanne
    Zonneveld, Marijke N.
    Omar, Amer
    Darvish, Mahshad
    Lopez, Irma
    Kroes, Hester Y.
    van Genderen, Maria M.
    Hoyng, Carel B.
    Rohrschneider, Klaus
    van Schooneveld, Mary J.
    Cremers, Frans P. M.
    den Hollander, Anneke I.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2010, 51 (11) : 5943 - 5951
  • [5] NMNAT1 variants cause cone and cone-rod dystrophy
    Nash, Benjamin M.
    Symes, Richard
    Goel, Himanshu
    Dinger, Marcel E.
    Bennetts, Bruce
    Grigg, John R.
    Jamieson, Robyn V.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 (03) : 428 - 433
  • [6] Various phenotypes of autosomal dominant cone-rod dystrophy with cone-rod homeobox mutation in two Chinese families
    Cui, Hui
    Jin, Xin
    Yang, Qing-Hua
    Qu, Ling-Hui
    Hou, Bao-Ke
    Li, Zhao-Hui
    Huang, Hou-Bin
    INTERNATIONAL JOURNAL OF OPHTHALMOLOGY, 2022, 15 (12) : 1915 - 1923
  • [7] Further Delineation of Spondylometaphyseal Dysplasia With Cone-Rod Dystrophy
    Sousa, Sergio B.
    Russell-Eggitt, Isabelle
    Hall, Christine
    Hall, Bryan D.
    Hennekam, Raoul C. M.
    AMERICAN JOURNAL OF MEDICAL GENETICS PART A, 2008, 146A (24) : 3186 - 3194
  • [8] Pathogenicity and functional analysis of CFAP410 mutations causing cone-rod dystrophy with macular staphyloma
    Yang, Shaoqing
    Li, Ya
    Yang, Lin
    Guo, Qingge
    You, Ya
    Lei, Bo
    FRONTIERS IN MEDICINE, 2023, 10
  • [9] Wide-Field Fundus Autofluorescence for Retinitis Pigmentosa and Cone/Cone-Rod Dystrophy
    Oishi, Akio
    Oishi, Maho
    Ogino, Ken
    Morooka, Satoshi
    Yoshimura, Nagahisa
    RETINAL DEGENERATIVE DISEASES: MECHANISMS AND EXPERIMENTAL THERAPY, 2016, 854 : 307 - 313
  • [10] Screening for variants in 20 genes in 130 unrelated patients with cone-rod dystrophy
    Huang, Li
    Li, Shiqiang
    Xiao, Xueshan
    Jia, Xiaoyun
    Wang, Panfeng
    Guo, Xiangming
    Zhang, Qingjiong
    MOLECULAR MEDICINE REPORTS, 2013, 7 (06) : 1779 - 1785