INVERSE BOUNDARY VALUE PROBLEM FOR SCHRODINGER EQUATION IN TWO DIMENSIONS

被引:27
作者
Imanuvilov, O. Yu. [1 ]
Yamamoto, M. [2 ]
机构
[1] Colorado State Univ, Dept Math, Ft Collins, CO 80523 USA
[2] Univ Tokyo, Dept Math Sci, Meguro Ku, Tokyo 153, Japan
关键词
inverse boundary value problem; partial Cauchy data; Schrodinger equation; complex geometrical optics solution; CONDUCTIVITY PROBLEM; GLOBAL UNIQUENESS; CALDERON PROBLEM; CAUCHY DATA;
D O I
10.1137/11083736X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We relax the regularity condition on potentials of the Schrodinger equation in uniqueness results on the inverse boundary value problem which were recently proved in [O. Imanuvilov, G. Uhlmann, and M. Yamamoto, J. Amer. Math. Soc., 23 (2010), pp. 655 691] and [A. Bukhgeim, J. Inverse Ill-Posed Probl., 16 (2008), pp. 19-34].
引用
收藏
页码:1333 / 1339
页数:7
相关论文
共 16 条
[1]  
[Anonymous], 2000, PARTIAL DIFFERENTIAL
[2]  
[Anonymous], 1985, ANAL PARTIAL DIFFERE
[3]   Calderon's inverse conductivity problem in the plane [J].
Astala, Kari ;
Paivarinta, Lassi .
ANNALS OF MATHEMATICS, 2006, 163 (01) :265-299
[4]  
BLASTEN E., 2011, INVERSE PROBLEM SCHR
[5]  
BROWN R, 2003, J FOURIER ANAL APPL, V9, P1049
[6]   Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions [J].
Brown, RM ;
Uhlmann, GA .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1997, 22 (5-6) :1009-1027
[7]   Recovering a potential from Cauchy data in the two-dimensional case [J].
Bukhgeim, A. L. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (01) :19-33
[8]   Recovering a potential from partial Cauchy data [J].
Bukhgeim, AL ;
Uhlmann, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) :653-668
[9]  
Calderon A., 1980, SEM NUM AN ITS APPL, P65, DOI DOI 10.1590/S0101-82052006000200002
[10]   CALDERON INVERSE PROBLEM WITH PARTIAL DATA ON RIEMANN SURFACES [J].
Guillarmou, Colin ;
Tzou, Leo .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (01) :83-120