Optically Transparent and Flexible Graphene Reciprocal and Nonreciprocal Microwave Planar Components

被引:26
作者
Chamanara, Nima [1 ]
Sounas, Dimitrios [1 ]
Szkopek, Thomas [2 ]
Caloz, Christophe [1 ]
机构
[1] Ecole Polytech, PolyGrames Res Ctr, Montreal, PQ H3T 1J4, Canada
[2] McGill Univ, Dept Elect & Comp Engn, Montreal, PQ H3A 2A7, Canada
关键词
Graphene; gyrotropy; nonrecirocal components; optically transparent and flexible electronics; FILMS;
D O I
10.1109/LMWC.2012.2201929
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The sheet resistance of graphene has been recently reduced below the level of previous optically transparent conductive materials, making graphene, with its additional advantage of mechanical flexibility, the best candidate for future transparent electronics. We investigate here the viability of microwave planar components using graphene sheets as conductors towards optically transparent and flexible radio systems. Specifically, we study the waveguiding and nonreciprocal properties of such components, through the arbitrary example of a coplanar waveguide (CPW) structure, using the 2-D finite difference frequency domain (FDFD) technique. It is shown that reciprocal graphene-based components of acceptably low loss levels are achievable using graphene sheets of the lowest available resistivity, while nonreciprocal components with graphene conductors still exhibit prohibitive loss due to a fundamental trade-off between nonreciprocity and carrier density in graphene.
引用
收藏
页码:360 / 362
页数:3
相关论文
共 21 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[3]   Layer-by-Layer Doping of Few-Layer Graphene Film [J].
Gunes, Fethullah ;
Shin, Hyeon-Jin ;
Biswas, Chandan ;
Han, Gang Hee ;
Kim, Eun Sung ;
Chae, Seung Jin ;
Choi, Jae-Young ;
Lee, Young Hee .
ACS NANO, 2010, 4 (08) :4595-4600
[4]   Dyadic Green's functions for an anisotropic, non-local model of biased graphene [J].
Hanson, George W. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2008, 56 (03) :747-757
[5]   A compact 2-D FDFD method for modeling microstrip structures with nonuniform grids and perfectly matched layer [J].
Hwang, HN .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2005, 53 (02) :653-659
[6]   Transparent Electronics Based on Transfer Printed Aligned Carbon Nanotubes on Rigid and Flexible Substrates [J].
Ishikawa, Fumiaki N. ;
Chang, Hsiao-Kang ;
Ryu, Koungmin ;
Chen, Po-Chiang ;
Badmaev, Alexander ;
De Arco, Lewis Gomez ;
Shen, Guozhen ;
Zhou, Chongwu .
ACS NANO, 2009, 3 (01) :73-79
[7]   Fabrication of fully transparent nanowire transistors for transparent and flexible electronics [J].
Ju, Sanghyun ;
Facchetti, Antonio ;
Xuan, Yi ;
Liu, Jun ;
Ishikawa, Fumiaki ;
Ye, Peide ;
Zhou, Chongwu ;
Marks, Tobin J. ;
Janes, David B. .
NATURE NANOTECHNOLOGY, 2007, 2 (06) :378-384
[8]   Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].
Kim, Keun Soo ;
Zhao, Yue ;
Jang, Houk ;
Lee, Sang Yoon ;
Kim, Jong Min ;
Kim, Kwang S. ;
Ahn, Jong-Hyun ;
Kim, Philip ;
Choi, Jae-Young ;
Hong, Byung Hee .
NATURE, 2009, 457 (7230) :706-710
[9]   Enhancing the conductivity of transparent graphene films via doping [J].
Kim, Ki Kang ;
Reina, Alfonso ;
Shi, Yumeng ;
Park, Hyesung ;
Li, Lain-Jong ;
Lee, Young Hee ;
Kong, Jing .
NANOTECHNOLOGY, 2010, 21 (28)
[10]  
Kittel C., 2004, INTRO SOLID STATE PH