Extremal C4-Free/C5-Free Planar Graphs

被引:35
作者
Dowden, Chris [1 ]
机构
[1] London Sch Econ, Dept Math, London, England
基金
欧洲研究理事会;
关键词
extremal graphs; planar graphs; C-4-free; C-5-free;
D O I
10.1002/jgt.21991
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the topic of "extremal" planar graphs, defining ex(P) (n, H) to be the maximum number of edges possible in a planar graph on n vertices that does not contain a given graph H as a subgraph. In particular, we examine the case when H is a small cycle, obtaining ex(P) (n, C-4) <= 15/7 (n-2) for all n >= 4 and ex(P) (n, C-5) = 12n-33/5 for all n >= 11, and showing that both of these bounds are tight. (C) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:213 / 230
页数:18
相关论文
共 5 条
[1]  
Bollobas B., 1998, Modern graph theory, graduate texts in mathematics 184, P120
[2]   ON THE STRUCTURE OF LINEAR GRAPHS [J].
ERDOS, P ;
STONE, AH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1946, 52 (12) :1087-1091
[3]  
Giménez O, 2009, J AM MATH SOC, V22, P309
[4]   Random planar graphs [J].
McDiarmid, C ;
Steger, A ;
Welsh, DJA .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (02) :187-205
[5]  
Turan P., 1941, Mat. Fiz. Lapok, V48, P436