Estimating stellar atmospheric parameters based on LASSO and support-vector regression

被引:12
|
作者
Lu, Yu [1 ]
Li, Xiangru [1 ]
机构
[1] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
methods: statistical; techniques: spectroscopic; stars: atmospheres; stars: fundamental parameters; DIGITAL SKY SURVEY; DATA RELEASE; SEGUE; CALIBRATION; VALIDATION; ABUNDANCE;
D O I
10.1093/mnras/stv1373
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A scheme for estimating atmospheric parameters T-eff, logg and [Fe/H] is proposed on the basis of the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm and Haar wavelet. The proposed scheme consists of three processes. A spectrum is decomposed using the Haar wavelet transform and low-frequency components at the fourth level are considered as candidate features. Then, spectral features from the candidate features are detected using the LASSO algorithm to estimate the atmospheric parameters. Finally, atmospheric parameters are estimated from the extracted spectral features using the support-vector regression (SVR) method. The proposed scheme was evaluated using three sets of stellar spectra from the Sloan Digital Sky Survey (SDSS), Large Sky Area Multi-object Fibre Spectroscopic Telescope (LAMOST) and Kurucz's model, respectively. The mean absolute errors are as follows: for the 40 000 SDSS spectra, 0.0062 dex for log T-eff (85.83 K for T-eff), 0.2035 dex for log g and 0.1512 dex for [Fe/H]; for the 23 963 LAMOST spectra, 0.0074 dex for log T-eff (95.37 K for T-eff), 0.1528 dex for log g and 0.1146 dex for [Fe/H]; for the 10 469 synthetic spectra, 0.0010 dex for log T-eff (14.42K for T-eff), 0.0123 dex for log g and 0.0125 dex for [Fe/H].
引用
收藏
页码:1394 / 1401
页数:8
相关论文
共 50 条
  • [1] Estimating stellar atmospheric parameters based on Lasso features
    Chuan-Xing Liu
    Pei-Ai Zhang
    Yu Lu
    ResearchinAstronomyandAstrophysics, 2014, 14 (04) : 423 - 432
  • [2] Estimating stellar atmospheric parameters based on Lasso features
    Liu, Chuan-Xing
    Zhang, Pei-Ai
    Lu, Yu
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2014, 14 (04) : 423 - 432
  • [3] POTENTIAL OF SUPPORT-VECTOR REGRESSION FOR FORECASTING STREAM FLOW
    Radzi, Mohd Rashid Bin Mohd
    Shamshirband, Shahaboddin
    Aghabozorgi, Saeed
    Misra, Sanjay
    Akib, Shatirah
    Kiah, Laiha Mat
    TEHNICKI VJESNIK-TECHNICAL GAZETTE, 2014, 21 (05): : 1017 - 1024
  • [4] DDCM: A Computational Strategy for Drug Repositioning Based on Support-Vector Regression Algorithm
    Xu, Manyi
    Li, Wan
    He, Jiaheng
    Wang, Yahui
    Lv, Junjie
    He, Weiming
    Chen, Lina
    Zhi, Hui
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [5] J-PLUS: Support vector regression to measure stellar parameters
    Wang, Cunshi
    Bai, Yu
    Yuan, Haibo
    Liu, Jifeng
    Fernández-Ontiveros, J.A.
    Coelho, Paula R.T.
    Jiménez-Esteban, F.
    Galarza, Carlos Andrés
    Angulo, R.E.
    Cenarro, A.J.
    Cristóbal-Hornillos, D.
    Dupke, R.A.
    Ederoclite, A.
    Hernández-Monteagudo, C.
    López-Sanjuan, C.
    Marín-Franch, A.
    Moles, M.
    Sodré, L.
    Ramió, H. Vázquez
    Varela, J.
    arXiv, 2022,
  • [6] J-PLUS: Support vector regression to measure stellar parameters
    Wang, C.
    Bai, Y.
    Yuan, H.
    Liu, J.
    Fernandez-Ontiveros, J. A.
    Coelho, P. R. T.
    Jimenez-Esteban, F.
    Galarza, C. A.
    Angulo, R. E.
    Cenarro, A. J.
    Cristobal-Hornillos, D.
    Dupke, R. A.
    Ederoclite, A.
    Hernandez-Monteagudo, C.
    Lopez-Sanjuan, C.
    Marin-Franch, A.
    Moles, M.
    Sodre, L., Jr.
    Ramio, H. Vazquez
    Varela, J.
    ASTRONOMY & ASTROPHYSICS, 2022, 664
  • [7] Spatial Logistic Regression for Support-Vector Classification of Hyperspectral Imagery
    Liu, Wu
    Fowler, James E.
    Zhao, Chunhui
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (03) : 439 - 443
  • [8] A confidence predictor for logD using conformal regression and a support-vector machine
    Maris Lapins
    Staffan Arvidsson
    Samuel Lampa
    Arvid Berg
    Wesley Schaal
    Jonathan Alvarsson
    Ola Spjuth
    Journal of Cheminformatics, 10
  • [9] A confidence predictor for logD using conformal regression and a support-vector machine
    Lapins, Maris
    Arvidsson, Staffan
    Lampa, Samuel
    Berg, Arvid
    Schaal, Wesley
    Alvarsson, Jonathan
    Spjuth, Ola
    JOURNAL OF CHEMINFORMATICS, 2018, 10
  • [10] Support-Vector Regression for Permeability Prediction in a Heterogeneous Reservoir: A Comparative Study
    Al-Anazi, A.
    Gates, I. D.
    SPE RESERVOIR EVALUATION & ENGINEERING, 2010, 13 (03) : 485 - 495