Paraboline variation over p-adic families of (φ, Γ)-modules

被引:13
作者
Bergdall, John [1 ]
机构
[1] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
(phi; Gamma)-modules; trianguline representations; GALOIS REPRESENTATIONS; ANALYTIC FAMILIES; MODULAR-FORMS; COHOMOLOGY; SPACES; FIELDS;
D O I
10.1112/S0010437X16007831
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the p-adic variation of triangulations over p-adic families of (phi, Gamma)-modules. In particular, we study certain canonical sub-filtrations of the pointwise triangulations and show that they extend to affinoid neighborhoods of crystalline points. This generalizes results of Kedlaya, Pottharst and Xiao and (independently) Liu in the case where one expects the entire triangulation to extend. We also study the ramification of weight parameters over natural p-adic families.
引用
收藏
页码:132 / 174
页数:43
相关论文
共 50 条
[41]   Probing holography in p-adic CFT [J].
Ebert, Stephen ;
Sun, Hao-Yu ;
Zhang, Meng-Yang .
PHYSICAL REVIEW D, 2023, 107 (12)
[42]   Cusp forms as p-adic limits [J].
Hanson, Michael ;
Jameson, Marie .
JOURNAL OF NUMBER THEORY, 2022, 234 :349-362
[43]   Cohomology of p-adic analytic curves [J].
Colmez, Pierre ;
Dospinescu, Gabriel ;
Niziol, Wieslawa .
CAMBRIDGE JOURNAL OF MATHEMATICS, 2022, 10 (03) :511-655
[44]   Spin in p-adic AdS/CFT [J].
Gubser, Steven S. ;
Jepsen, Christian ;
Trundy, Brian .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (14)
[45]   p-adic lattices are not Kahler groups [J].
Klingler, Bruno .
EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2019, 3
[46]   LOCAL ACYCLICITY IN p-ADIC COHOMOLOGY [J].
Lazda, Christopher .
DOCUMENTA MATHEMATICA, 2021, 26 :981-1044
[47]   On the reduction modulo p of certain modular p-adic Galois representations [J].
Ganguli, Abhik .
JOURNAL OF NUMBER THEORY, 2017, 172 :392-412
[48]   The p-adic local Langlands correspondence for GL(2)(Q(p)) [J].
Colmez, Pierre ;
Dospinescu, Gabriel ;
Paskunas, Vytautas .
CAMBRIDGE JOURNAL OF MATHEMATICS, 2014, 2 (01) :1-47
[49]   An introduction to p-adic Teichmuller theory [J].
Mochizuki, S .
ASTERISQUE, 2002, (278) :1-+
[50]   LOCAL-GLOBAL QUESTIONS FOR TORI OVER p-ADIC FUNCTION FIELDS [J].
Harari, David ;
Szamuely, Tamas .
JOURNAL OF ALGEBRAIC GEOMETRY, 2016, 25 (03) :571-605