Paraboline variation over p-adic families of (φ, Γ)-modules

被引:12
作者
Bergdall, John [1 ]
机构
[1] Boston Univ, Dept Math & Stat, 111 Cummington Mall, Boston, MA 02215 USA
基金
美国国家科学基金会;
关键词
(phi; Gamma)-modules; trianguline representations; GALOIS REPRESENTATIONS; ANALYTIC FAMILIES; MODULAR-FORMS; COHOMOLOGY; SPACES; FIELDS;
D O I
10.1112/S0010437X16007831
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the p-adic variation of triangulations over p-adic families of (phi, Gamma)-modules. In particular, we study certain canonical sub-filtrations of the pointwise triangulations and show that they extend to affinoid neighborhoods of crystalline points. This generalizes results of Kedlaya, Pottharst and Xiao and (independently) Liu in the case where one expects the entire triangulation to extend. We also study the ramification of weight parameters over natural p-adic families.
引用
收藏
页码:132 / 174
页数:43
相关论文
共 33 条
[1]  
Bellaïche J, 2009, ASTERISQUE, P1
[2]   p-adic Hodge theory in rigid analytic families [J].
Bellovin, Rebecca .
ALGEBRA & NUMBER THEORY, 2015, 9 (02) :371-433
[3]   Ordinary modular forms and companion points on the eigencurve [J].
Bergdall, John .
JOURNAL OF NUMBER THEORY, 2014, 134 :226-239
[4]  
Berger L, 2002, INVENT MATH, V148, P219, DOI 10.1007/s002220100202
[5]  
Berger L, 2008, ASTERISQUE, P13
[6]  
Berkovich VG, 1993, PUBL MATH, P5
[7]   FORMAL AND RIGID GEOMETRY .2. FLATTENING TECHNIQUES [J].
BOSCH, S ;
LUTKEBOHMERT, W .
MATHEMATISCHE ANNALEN, 1993, 296 (03) :403-429
[8]  
Bosch S., 1984, Grundlehren der mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V261, DOI DOI 10.1007/978-3-642-52229-1
[9]  
Breuil C, 2015, MATH ANN, V361, P741, DOI 10.1007/s00208-014-1086-7
[10]  
Cartier P., 1990, Progr. Math., V87, P249