GPU-Accelerated Drug Discovery with Docking on the Summit Supercomputer: Porting, Optimization, and Application to COVID-19 Research

被引:31
作者
LeGrand, Scott [1 ]
Scheinberg, Aaron [2 ]
Tillack, Andreas F. [3 ]
Thavappiragasam, Mathialakan [4 ]
Vermaas, Josh V. [4 ]
Agarwal, Rupesh [5 ]
Larkin, Jeff [1 ]
Poole, Duncan [1 ]
Santos-Martins, Diogo [3 ]
Solis-Vasquez, Leonardo [6 ]
Koch, Andreas [6 ]
Forli, Stefano [3 ]
Hernandez, Oscar [4 ]
Smith, Jeremy C. [5 ,7 ]
Sedova, Ada [4 ]
机构
[1] NVIDIA Corp, Santa Clara, CA USA
[2] Jubilee Dev, Cambridge, MA USA
[3] Scripps Res, La Jolla, CA USA
[4] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[5] Univ Tennessee, Knoxville, TN USA
[6] Tech Univ Darmstadt, Darmstadt, Germany
[7] UT ORNL, Oak Ridge, TN USA
来源
ACM-BCB 2020 - 11TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS | 2020年
基金
美国国家卫生研究院;
关键词
Drug discovery; high-performance computing; GPU acceleration; protein-ligand docking; MOLECULAR DOCKING; AUTOMATED DOCKING; SYSTEM;
D O I
10.1145/3388440.3412472
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Protein-ligand docking is an in silico tool used to screen potential drug compounds for their ability to bind to a given protein receptor within a drug-discovery campaign. Experimental drug screening is expensive and time consuming, and it is desirable to carry out large scale docking calculations in a high-throughput manner to narrow the experimental search space. Few of the existing computational docking tools were designed with high performance computing in mind. Therefore, optimizations to maximize use of high-performance computational resources available at leadership-class computing facilities enables these facilities to be leveraged for drug discovery. Here we present the porting, optimization, and validation of the AutoDock-GPU program for the Summit supercomputer, and its application to initial compound screening efforts to target proteins of the SARS-CoV-2 virus responsible for the current COVID-19 pandemic.
引用
收藏
页数:10
相关论文
共 37 条
[1]   The Protein Data Bank [J].
Berman, HM ;
Westbrook, J ;
Feng, Z ;
Gilliland, G ;
Bhat, TN ;
Weissig, H ;
Shindyalov, IN ;
Bourne, PE .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :235-242
[2]  
Zeiler MD, 2012, Arxiv, DOI arXiv:1212.5701
[3]  
Diogo Santos-Martins, 2019, ACCELERATING AUTODOC
[4]   Reoptimization of MDL keys for use in drug discovery [J].
Durant, JL ;
Leland, BA ;
Henry, DR ;
Nourse, JG .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2002, 42 (06) :1273-1280
[5]   VinaMPI: Facilitating multiple receptor high-throughput virtual docking on high-performance computers [J].
Ellingson, Sally R. ;
Smith, Jeremy C. ;
Baudry, Jerome .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2013, 34 (25) :2212-2221
[6]   GeauxDock: Accelerating Structure-Based Virtual Screening with Heterogeneous Computing [J].
Fang, Ye ;
Ding, Yun ;
Feinstein, Wei P. ;
Koppelman, David M. ;
Moreno, Juana ;
Jarrell, Mark ;
Ramanujam, J. ;
Brylinski, Michal .
PLOS ONE, 2016, 11 (07)
[7]   Computational protein-ligand docking and virtual drug screening with the AutoDock suite [J].
Forli, Stefano ;
Huey, Ruth ;
Pique, Michael E. ;
Sanner, Michel F. ;
Goodsell, David S. ;
Olson, Arthur J. .
NATURE PROTOCOLS, 2016, 11 (05) :905-919
[8]   Enzyme assays for high-throughput screening [J].
Goddard, JP ;
Reymond, JL .
CURRENT OPINION IN BIOTECHNOLOGY, 2004, 15 (04) :314-322
[9]   AUTOMATED DOCKING OF SUBSTRATES TO PROTEINS BY SIMULATED ANNEALING [J].
GOODSELL, DS ;
OLSON, AJ .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1990, 8 (03) :195-202
[10]   An open-source drug discovery platform enables ultra-large virtual screens [J].
Gorgulla, Christoph ;
Boeszoermenyi, Andras ;
Wang, Zi-Fu ;
Fischer, Patrick D. ;
Coote, Paul W. ;
Padmanabha Das, Krishna M. ;
Malets, Yehor S. ;
Radchenko, Dmytro S. ;
Moroz, Yurii S. ;
Scott, David A. ;
Fackeldey, Konstantin ;
Hoffmann, Moritz ;
Iavniuk, Iryna ;
Wagner, Gerhard ;
Arthanari, Haribabu .
NATURE, 2020, 580 (7805) :663-+