On the Pollard decomposition method applied to some Jacobi-Sobolev expansions

被引:13
作者
Marcellan, Francisco [1 ]
Quintana, Yamilet [2 ]
Urieles, Alejandro [2 ]
机构
[1] Univ Carlos III Madrid, Dept Math, Madrid, Spain
[2] Univ Simon Bolivar, Dept Pure & Appl Math, Caracas 1080A, Venezuela
关键词
Sobolev orthogonal polynomials; weighted Sobolev spaces; Fourier expansions; Sobolev-Fourier expansions; MEAN CONVERGENCE; FOURIER-SERIES;
D O I
10.3906/mat-1208-29
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {qn((alpha,beta))}(n >= 0) be the sequence of polynomials orthonormal with respect to the Sobolev inner product < f,g > s := integral(1)(-1) f(x)g(x)w((alpha,beta)) (x)dx + integral(1)(-1) f'(x)g'(x)w((alpha+1, beta+1)) (x)dx, where w((alpha,beta))(x) = (1-x)(alpha)(1+x)(beta), x is an element of [-1,1] and alpha,beta > -1. This paper explores the convergence in the W-1,W-p ((-1,1),(w((alpha,beta)), w((alpha+1,beta+1)))) norm of the Fourier expansion in terms of {q(n)((alpha,beta))}(n >= 0) with 1 <p < infinity, using the Pollard decomposition method. Numerical examples concerning the comparison between the approximation of functions in L-2 norm and W-1,W-2 norm are also presented.
引用
收藏
页码:934 / 948
页数:15
相关论文
共 35 条
[1]  
[Anonymous], 1974, REAL COMPLEX ANAL
[2]  
Askey R., 1975, ORTHOGONAL POLYNOMIA
[3]  
Badkov V.M., 1969, MATH NOTES, V5, P174
[4]   The Bochner-Riesz means for Fourier-Bessel expansions [J].
Ciaurri, O ;
Roncal, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 228 (01) :89-113
[5]   Sobolev orthogonal polynomials and (M, N)-coherent pairs of measures [J].
de Jesus, M. N. ;
Petronilho, J. .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 237 (01) :83-101
[6]  
Fejzullahu B. X., 2008, NOVI SAD J MATH, V38, P35
[7]   Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer-Sobolev inner product [J].
Fejzullahu, Bujar Xh .
JOURNAL OF APPROXIMATION THEORY, 2010, 162 (02) :397-406
[8]   A Cohen type inequality for Laguerre-Sobolev expansions [J].
Fejzullahu, Bujar Xh. ;
Marcellan, Francisco .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 352 (02) :880-889
[9]  
Iserles A., 1990, ALGORITHMS APPROXIMA, P117
[10]  
Johansson M., 1999, THESIS VAXJO U SWEDE