Real-Time Monitoring of Biotinylated Molecules Detection Dynamics in Nanoporous Anodic Alumina for Bio-Sensing

被引:38
作者
Pol, Laura [1 ]
Eckstein, Chris [1 ]
Acosta, Laura K. [1 ]
Xifre-Perez, Elisabet [1 ]
Ferre-Borrull, Josep [1 ]
Marsal, Lluis F. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Elect Elect & Automat, Avda Paisos Catalans 26, Tarragona 43007, Spain
关键词
nanoporous anodic alumina; streptavidin; biotin; RIfS; biosensing; SURFACE MODIFICATION; STREPTAVIDIN; BIOSENSORS; THROMBIN;
D O I
10.3390/nano9030478
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The chemical modification, or functionalization, of the surfaces of nanomaterials is a key step to achieve biosensors with the best sensitivity and selectivity. The surface modification of biosensors usually comprises several modification steps that have to be optimized. Real-time monitoring of all the reactions taking place during such modification steps can be a highly helpful tool for optimization. In this work, we propose nanoporous anodic alumina (NAA) functionalized with the streptavidin-biotin complex as a platform towards label-free biosensors. Using reflective interferometric spectroscopy (RIfS), the streptavidin-biotin complex formation, using biotinylated thrombin as a molecule model, was monitored in real-time. The study compared the performance of different NAA pore sizes in order to achieve the highest response. Furthermore, the optimal streptavidin concentration that enabled the efficient detection of the biotinylated thrombin attachment was estimated. Finally, the ability of the NAA-RIfS system to quantify the concentration of biotinylated thrombin was evaluated. This study provides an optimized characterization method to monitor the chemical reactions that take place during the biotinylated molecules attachment within the NAA pores.
引用
收藏
页数:12
相关论文
共 42 条
[1]   Stacked Nanoporous Anodic Alumina Gradient-Index Filters with Tunable Multispectral Photonic Stopbands as Sensing Platforms [J].
Acosta, Laura K. ;
Berto-Rosello, Francesc ;
Xifre-Perez, Elisabet ;
Santos, Abel ;
Ferre-Borrull, Josep ;
Marsal, Lluis F. .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (03) :3360-3371
[2]   A Label-Free Porous Alumina Interferometric Immunosensor [J].
Alvarez, Sara D. ;
Li, Chang-Peng ;
Chiang, Casey E. ;
Schuller, Ivan K. ;
Sailor, Michael J. .
ACS NANO, 2009, 3 (10) :3301-3307
[3]   Fabrication of highly sensitive QCM sensor using AAO nanoholes and its application in biosensing [J].
Asai, Naoto ;
Shimizu, Tomohiro ;
Shingubara, Shoso ;
Ito, Takeshi .
SENSORS AND ACTUATORS B-CHEMICAL, 2018, 276 :534-539
[4]   A novel electrochemical detection method for aptamer biosensors [J].
Bang, GS ;
Cho, S ;
Kim, BG .
BIOSENSORS & BIOELECTRONICS, 2005, 21 (06) :863-870
[5]   Protein attachment to nanoporous anodic alumina for biotechnological applications: Influence of pore size, protein size and functionalization path [J].
Baranowska, Malgorzata ;
Slota, Agata J. ;
Eravuchira, Pinkie J. ;
Macias, Gerard ;
Xifre-Perez, Elisabet ;
Pallares, Josep ;
Ferre-Borrull, Josep ;
Marsal, Lluis F. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2014, 122 :375-383
[6]   POSTSECRETORY MODIFICATIONS OF STREPTAVIDIN [J].
BAYER, EA ;
BENHUR, H ;
HILLER, Y ;
WILCHEK, M .
BIOCHEMICAL JOURNAL, 1989, 259 (02) :369-376
[7]   PROPERTIES OF STREPTAVIDIN BIOTIN-BINDING PROTEIN PRODUCED BY STREPTOMYCETES [J].
CHAIET, L ;
WOLF, FJ .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1964, 106 (1-3) :1-&
[8]   Non-invasive, in vitro analysis of islet insulin production enabled by an optical porous silicon biosensor [J].
Chhasatia, Rinku ;
Sweetman, Martin J. ;
Harding, Frances J. ;
Waibel, Michaela ;
Kay, Tom ;
Thomas, Helen ;
Loudovaris, Thomas ;
Voelcker, Nicolas H. .
BIOSENSORS & BIOELECTRONICS, 2017, 91 :515-522
[9]   Nanoporous Anodic Alumina Surface Modification by Electrostatic, Covalent, and Immune Complexation Binding Investigated by Capillary Filling [J].
Eckstein, Chris ;
Acosta, Laura K. ;
Pol, Laura ;
Xifre-Perez, Elisabet ;
Pallares, Josep ;
Ferre-Borrull, Josep ;
Marsal, Lluis F. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (12) :10571-10579
[10]  
Ferré-Borrull J, 2015, SPRINGER SER MATER S, V219, P185, DOI 10.1007/978-3-319-20334-8_6