Channel Coded Distribution Field Tracking for Thermal Infrared Imagery

被引:26
作者
Berg, Amanda [1 ,2 ]
Ahlberg, Jorgen [1 ,2 ]
Felsberg, Michael [2 ]
机构
[1] Termisk Syst Tekn AB, Diskettgatan 11 B, S-58335 Linkoping, Sweden
[2] Linkoping Univ, Dept EE, Comp Vis Lab, S-58183 Linkoping, Sweden
来源
PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016) | 2016年
关键词
TARGET TRACKING; ALGORITHMS;
D O I
10.1109/CVPRW.2016.158
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address short-term, single-object tracking, a topic that is currently seeing fast progress for visual video, for the case of thermal infrared (TIR) imagery. The fast progress has been possible thanks to the development of new template-based tracking methods with online template updates, methods which have not been explored for TIR tracking. Instead, tracking methods used for TIR are often subject to a number of constraints, e.g., warm objects, low spatial resolution, and static camera. As TIR cameras become less noisy and get higher resolution these constraints are less relevant, and for emerging civilian applications, e.g., surveillance and automotive safety, new tracking methods are needed. Due to the special characteristics of TIR imagery, we argue that template-based trackers based on distribution fields should have an advantage over trackers based on spatial structure features. In this paper, we propose a template-based tracking method (ABCD) designed specifically for TIR and not being restricted by any of the constraints above. In order to avoid background contamination of the object template, we propose to exploit background information for the online template update and to adaptively select the object region used for tracking. Moreover, we propose a novel method for estimating object scale change. The proposed tracker is evaluated on the VOT-TIR2015 and VOT2015 datasets using the VOT evaluation toolkit and a comparison of relative ranking of all common participating trackers in the challenges is provided. Further, the proposed tracker, ABCD, and the VOT-TIR2015 winner SRDCFir are evaluated on maritime data. Experimental results show that the ABCD tracker performs particularly well on thermal infrared sequences.
引用
收藏
页码:1248 / 1256
页数:9
相关论文
共 30 条
[1]   Trends in Correlation-Based Pattern Recognition and Tracking in Forward-Looking Infrared Imagery [J].
Alam, Mohammad S. ;
Bhuiyan, Sharif M. A. .
SENSORS, 2014, 14 (08) :13437-13475
[2]  
[Anonymous], 2010, COMP VIS PATT REC WO
[3]  
[Anonymous], 2015, ICCV
[4]  
[Anonymous], 2015, Journal of Nanotechnology: Nanomedicineand Nanobiotechnology
[5]   Automatic target tracking in FLIR image sequences using intensity variation function and template Modeling [J].
Bal, A ;
Alam, MS .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2005, 54 (05) :1846-1852
[6]  
Berg A., 2015, 2015 12 IEEE INT C A
[7]   Channel smoothing:: Efficient robust smoothing of low-level signal features [J].
Felsberg, M ;
Forssén, PE ;
Scharr, H .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (02) :209-222
[8]   The Thermal Infrared Visual Object Tracking VOT-TIR2015 Challenge Results [J].
Felsberg, Michael ;
Berg, Amanda ;
Hager, Gustav ;
Ahlberg, Jorgen ;
Kristan, Matej ;
Matas, Jiri ;
Leonardis, Ales ;
Cehovin, Luka ;
Fernandez, Gustavo ;
Vojir, Tomas ;
Nebehay, Georg ;
Pflugfelder, Roman ;
Lukezic, Alan ;
Garcia-Martin, Alvaro ;
Saffari, Amir ;
Li, Ang ;
Montero, Andres Solis ;
Zhao, Baojun ;
Schmid, Cordelia ;
Chen, Dapeng ;
Du, Dawei ;
Khan, Fahad Shahbaz ;
Porikli, Fatih ;
Zhu, Gao ;
Zhu, Guibo ;
Lu, Hanqing ;
Kieritz, Hilke ;
Li, Hongdong ;
Qi, Honggang ;
Jeong, Jae-chan ;
Cho, Jae-il ;
Lee, Jae-Yeong ;
Zhu, Jianke ;
Li, Jiatong ;
Feng, Jiayi ;
Wang, Jinqiao ;
Kim, Ji-Wan ;
Lang, Jochen ;
Martinez, Jose M. ;
Xue, Kai ;
Alahari, Karteek ;
Ma, Liang ;
Ke, Lipeng ;
Wen, Longyin ;
Bertinetto, Luca ;
Danelljan, Martin ;
Arens, Michael ;
Tang, Ming ;
Chang, Ming-Ching ;
Miksik, Ondrej .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, :639-651
[9]   Enhanced Distribution Field Tracking using Channel Representations [J].
Felsberg, Michael .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, :121-128
[10]  
Forssen P.-E., 2004, THESIS, P581