Image Segmentation Using Active Contour Models and Partial Differential Equations

被引:0
|
作者
Livada, Caslav [1 ]
Leventic, Hrvoje [1 ]
Galic, Irena [1 ]
机构
[1] Fac Elect Engn Osijek, Osijek, Croatia
来源
2014 56TH INTERNATIONAL SYMPOSIUM ELMAR (ELMAR) | 2014年
关键词
3D reconstruction; PDEs; Active Contours; Non linear-diffusion; MRI;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This article displays benefits of image segmentation for purpose of 3D reconstruction. Medical images and in this case CT slices are being reconstructed in 3D space for better medical investigation. It is relatively hard to use raw images for 3D reconstruction, so certain areas are being singled out using active contour models. Partial Differential Equations (PDEs), as non-linear diffusion, are used for image denoising because CT images have large gradiental areas that need to be evened out.
引用
收藏
页码:191 / 194
页数:4
相关论文
共 50 条
  • [21] Active Contour Using Local Regional Information on Extendable Search Lines (LRES) for Image Segmentation
    Phumeechanya, Sopon
    Pluempitiwiriyawej, Charnchai
    Thongvigitmanee, Saowapak
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2010, E93D (06): : 1625 - 1635
  • [22] A Fast Geodesic Active Contour Model for Medical Image Segmentation Using Prior Analysis and Wavelets
    Al Sharif, Sharif M. S.
    Deriche, Mohamed
    Maalej, Nabil
    El Ferik, Sami
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2014, 39 (02) : 1017 - 1037
  • [23] Automatic selection of localized region-based active contour models using image content analysis applied to brain tumor segmentation
    Ilunga-Mbuyamba, Elisee
    Gabriel Avina-Cervantes, Juan
    Cepeda-Negrete, Jonathan
    Alberto Ibarra-Manzano, Mario
    Chalopin, Claire
    COMPUTERS IN BIOLOGY AND MEDICINE, 2017, 91 : 69 - 79
  • [24] An efficient Self-Organizing Active Contour model for image segmentation
    Abdelsamea, Mohammed M.
    Gnecco, Giorgio
    Gaher, Mohamed Medhat
    NEUROCOMPUTING, 2015, 149 : 820 - 835
  • [25] Ultrasound Image Segmentation through a Fast Active Contour Based Algorithm
    Bisso, Ignacio
    Gambini, Juliana
    VI LATIN AMERICAN CONGRESS ON BIOMEDICAL ENGINEERING (CLAIB 2014), 2014, 49 : 357 - 360
  • [26] Computed tomography image analyzer: 3D reconstruction and segmentation applying active contour models - 'snakes'
    Maksimovic, R
    Stankovic, S
    Milovanovic, D
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2000, 58 : 29 - 37
  • [27] Image Segmentation Using an Active Contour Model Based on the Difference Between Local Intensity Averages and Actual Image Intensities
    Shan, Xiaoying
    Gong, Xiaoliang
    Ren, Yingchun
    Nandi, Asoke K.
    IEEE ACCESS, 2020, 8 : 43200 - 43214
  • [28] Unsupervised segmentation based on robust estimation and color active contour models
    Yang, L
    Meer, P
    Foran, DJ
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2005, 9 (03): : 475 - 486
  • [29] Image Segmentation Using Active Contour Model and Level Set Method Applied to Detect Oil Spills
    Airouche, M.
    Bentabet, L.
    Zelmat, M.
    WORLD CONGRESS ON ENGINEERING 2009, VOLS I AND II, 2009, : 846 - +
  • [30] MAGNETIC RESONANCE IMAGE SEGMENTATION FOR KNEE OSTEOARTHRITIS USING ACTIVE SHAPE MODELS
    Soh, Sarah Samson
    Swee, Tan Tian
    Ying, Sim Siew
    En, Chuah Zhi
    bin Mazenan, Mohd Nizam
    Meng, Leong Kah
    2014 7TH BIOMEDICAL ENGINEERING INTERNATIONAL CONFERENCE (BMEICON), 2014,