Terahertz Si:B blocked-impurity-band detectors defined by nonepitaxial methods

被引:28
作者
Rauter, P. [1 ]
Fromherz, T. [1 ]
Winnerl, S. [2 ]
Zier, M. [2 ]
Kolitsch, A. [2 ]
Helm, M. [2 ]
Bauer, G. [1 ]
机构
[1] Univ Linz, Inst Solid State Phys & Semicond, A-4040 Linz, Upper Austria, Austria
[2] Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
关键词
boron; elemental semiconductors; infrared detectors; ion implantation; semiconductor growth; silicon; submillimetre wave detectors;
D O I
10.1063/1.3059559
中图分类号
O59 [应用物理学];
学科分类号
摘要
The molecular beam epitaxial (MBE) fabrication of blocked-impurity-band detectors (BIB) has been a technologically complex and delicate matter ever since its demonstration in silicon, and has not been adapted for other material systems offering detection onsets at lower terahertz frequencies. We report the fabrication and characterization of a vertical Si:B BIB, circumventing the intrinsically troublesome MBE growth of an ultrapure blocking layer by employing ion implantation. We present a thorough characterization of our device, which exhibits highly competitive figures of merits. Our results not only increase the accessibility of BIB fabrication tools for ultrasensitive terahertz detection but also open a road to other material systems.
引用
收藏
页数:3
相关论文
共 10 条
[1]   Far-infrared absorption in Sb-doped Ge epilayers near the metal-insulator transition [J].
Bandaru, J ;
Beeman, JW ;
Haller, EE .
APPLIED PHYSICS LETTERS, 2002, 80 (19) :3536-3538
[2]   Ion-implanted Ge: B far-infrared blocked-impurity-band detectors [J].
Beeman, Jeffrey W. ;
Goyal, Supriya ;
Reichertz, Lothar A. ;
Haller, Eugene E. .
INFRARED PHYSICS & TECHNOLOGY, 2007, 51 (01) :60-65
[3]   Far-infrared absorption in GaAs:Te liquid phase epitaxial films [J].
Cardozo, BL ;
Haller, EE ;
Reichertz, LA ;
Beeman, JW .
APPLIED PHYSICS LETTERS, 2003, 83 (19) :3990-3992
[4]   Current-voltage characteristics of Si:As-based photodetectors with blocked hopping conductivity [J].
Esaev, DG ;
Sinitsa, SP ;
Chernyavskii, EV .
SEMICONDUCTORS, 1999, 33 (05) :574-577
[5]   Alternate operating mode for long wavelength blocked impurity band detectors [J].
Garcia, JC ;
Haegel, NM ;
Zagorski, EA .
APPLIED PHYSICS LETTERS, 2005, 87 (04)
[6]   Modeling of steady-state field distributions in blocked impurity band detectors [J].
Haegel, NM ;
Jacobs, JE ;
White, AM .
APPLIED PHYSICS LETTERS, 2000, 77 (26) :4389-4391
[7]   Far infrared photoconductivity studies in silicon blocked impurity band structures [J].
Leotin, J .
INFRARED PHYSICS & TECHNOLOGY, 1999, 40 (03) :153-160
[8]  
Petroff M. D., 1986, U.S. patent, Patent No. [4,568,960, 4568960]
[9]   DETECTION OF INDIVIDUAL 0.4-28-MU-M WAVELENGTH PHOTONS VIA IMPURITY-IMPACT IONIZATION IN A SOLID-STATE PHOTOMULTIPLIER [J].
PETROFF, MD ;
STAPELBROEK, MG ;
KLEINHANS, WA .
APPLIED PHYSICS LETTERS, 1987, 51 (06) :406-408
[10]   SELF-STABILIZATION OF THE MULTIPLICATION FACTOR IN BLOCKED IMPURITY BAND PHOTODETECTORS [J].
SHADRIN, VD ;
COON, VT ;
BLOKHIN, IK .
APPLIED PHYSICS LETTERS, 1993, 63 (01) :75-77