On Hermite-Hadamard type inequalities via generalized fractional integrals

被引:36
作者
Jleli, Mohamed [1 ]
O'Regan, Donal [2 ]
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Dept Math, Coll Sci, Riyadh, Saudi Arabia
[2] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
关键词
Hermite-Hadamard inequality; convex function; generalized fractional integral; Riemann-Liouville fractional integral; Hadamard fractional integral; MAPPINGS;
D O I
10.3906/mat-1507-79
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
New Hermite-Hadamard type inequalities are obtained for convex functions via generalized fractional integrals. The results presented here are generalizations of those obtained in earlier works.
引用
收藏
页码:1221 / 1230
页数:10
相关论文
共 25 条
[1]   Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means [J].
Alomari, M. ;
Darus, M. ;
Kirmaci, U. S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (01) :225-232
[2]  
[Anonymous], 2014, TURK J ANAL NUMBER T, DOI DOI 10.12691/TJANT-2-3-6
[3]  
Azpeitia A.G., 1994, Rev. Colomb. Mat, V28, P7
[4]  
Belarbi S., 2009, J. Inequal. Pure Appl. Math., V10, P1
[5]  
Dahmani Z., 2010, Int. J. Nonlinear Sci., V9, P493
[6]  
Dahmani Z, 2010, BULL MATH ANAL APPL, V2, P93
[7]   ON MINKOWSKI AND HERMITE-HADAMARD INTEGRAL INEQUALITIES VIA FRACTIONAL INTEGRATION [J].
Dahmani, Zoubir .
ANNALS OF FUNCTIONAL ANALYSIS, 2010, 1 (01) :51-58
[8]   A general multidimensional Hermite-Hadamard type inequality [J].
de la Cal, Jesus ;
Carcamo, Javier ;
Escauriaza, Luis .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) :659-663
[9]   Hermite-Hadamard's type inequalities for convex functions of selfadjoint operators in Hilbert spaces [J].
Dragomir, S. S. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (05) :1503-1515
[10]  
Dragomir S. S., 2000, RGMIA Monographs