Non-wetting droplets on hot superhydrophilic surfaces

被引:149
作者
Adera, Solomon [1 ]
Raj, Rishi [1 ]
Enright, Ryan [1 ,2 ,3 ]
Wang, Evelyn N. [1 ]
机构
[1] MIT, Dept Mech Engn, Device Res Lab, Cambridge, MA 02139 USA
[2] Alcatel Lucent Ireland Ltd, Bell Labs Ireland, Efficient Energy Transfer nET Dept, Thermal Management Res Grp, Dublin 15, Ireland
[3] Univ Limerick, Stokes Inst, Limerick, Ireland
来源
NATURE COMMUNICATIONS | 2013年 / 4卷
基金
美国国家科学基金会;
关键词
LEIDENFROST POINT; WATER; TEMPERATURE; WETTABILITY; NANOFLUIDS; REDUCTION; ALUMINA; SILICA;
D O I
10.1038/ncomms3518
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Controlling wettability by varying surface chemistry and roughness or by applying external stimuli is of interest for a wide range of applications including microfluidics, drag reduction, self-cleaning, water harvesting, anti-corrosion, anti-fogging, anti-icing and thermal management. It has been well known that droplets on textured hydrophilic, that is superhydrophilic, surfaces form thin films with near-zero contact angles. Here we report an unexpected behaviour where non-wetting droplets are formed by slightly heating superhydrophilic microstructured surfaces beyond the saturation temperature (>5 degrees C). Although such behaviour is generally not expected on superhydrophilic surfaces, an evaporation-induced pressure in the structured region prevents wetting. In particular, the increased thermal conductivity and decreased vapour permeability of the structured region allows this behaviour to be observed at such low temperatures. This phenomenon is distinct from the widely researched Leidenfrost and offers an expanded parametric space for fabricating surfaces with desired temperature-dependent wettability.
引用
收藏
页数:7
相关论文
共 39 条
  • [1] Liquid marbles as thermally robust droplets: coating-assisted Leidenfrost-like effect
    Aberle, Cedric
    Lewis, Mark
    Yu, Gan
    Lei, Nan
    Xu, Jie
    [J]. SOFT MATTER, 2011, 7 (24) : 11314 - 11318
  • [2] LEIDENFROST BOILING OF METHANOL DROPLETS ON HOT POROUS CERAMIC SURFACES
    AVEDISIAN, CT
    KOPLIK, J
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1987, 30 (02) : 379 - 393
  • [3] Baumeister K.J., 1965, NASA TN D-3133
  • [4] A cavity activation and bubble growth model of the Leidenfrost point
    Bernardin, JD
    Mudawar, I
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2002, 124 (05): : 864 - 874
  • [5] The Leidenfrost point: Experimental study and assessment of existing models
    Bernardin, JD
    Mudawar, I
    [J]. JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1999, 121 (04): : 894 - 903
  • [6] Leidenfrost drops
    Biance, AL
    Clanet, C
    Quéré, D
    [J]. PHYSICS OF FLUIDS, 2003, 15 (06) : 1632 - 1637
  • [7] Wetting of textured surfaces
    Bico, J
    Thiele, U
    Quéré, D
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2002, 206 (1-3) : 41 - 46
  • [8] BRINKMAN HC, 1947, APPL SCI RES, V1, P27
  • [9] Carey VP, 2020, Liquid-vapor Phase-change Phenomena: An Introduction to the Thermophysics of Vaporization and Condensation Processes in Heat Transfer Equipment. Series in chemical and mechanical engineering
  • [10] Leidenfrost Point Reduction on Micropatterned Metallic Surfaces
    del Cerro, Daniel Arnaldo
    Marin, Alvaro G.
    Romer, Gertwillem R. B. E.
    Pathiraj, B.
    Lohse, Detlef
    in't Veld, Albertus J. Huis
    [J]. LANGMUIR, 2012, 28 (42) : 15106 - 15110