U-Net based deep learning bladder segmentation in CT urography

被引:53
|
作者
Ma, Xiangyuan [1 ,2 ,3 ]
Hadjiiski, Lubomir M. [1 ]
Wei, Jun [1 ]
Chan, Heang-Ping [1 ]
Cha, Kenny H. [1 ]
Cohan, Richard H. [1 ]
Caoili, Elaine M. [1 ]
Samala, Ravi [1 ]
Zhou, Chuan [1 ]
Lu, Yao [2 ,3 ]
机构
[1] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA
[2] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
关键词
bladder; computer-aided detection; CT urography; deep learning; segmentation; CONVOLUTION NEURAL-NETWORK; MULTIDETECTOR ROW CT; WALL SEGMENTATION; MASS;
D O I
10.1002/mp.13438
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesTo develop a U-Net-based deep learning approach (U-DL) for bladder segmentation in computed tomography urography (CTU) as a part of a computer-assisted bladder cancer detection and treatment response assessment pipeline. Materials and methodsA dataset of 173 cases including 81 cases in the training/validation set (42 masses, 21 with wall thickening, 18 normal bladders), and 92 cases in the test set (43 masses, 36 with wall thickening, 13 normal bladders) were used with Institutional Review Board approval. An experienced radiologist provided three-dimensional (3D) hand outlines for all cases as the reference standard. We previously developed a bladder segmentation method that used a deep learning convolution neural network and level sets (DCNN-LS) within a user-input bounding box. However, some cases with poor image quality or with advanced bladder cancer spreading into the neighboring organs caused inaccurate segmentation. We have newly developed an automated U-DL method to estimate a likelihood map of the bladder in CTU. The U-DL did not require a user-input box and the level sets for postprocessing. To identify the best model for this task, we compared the following models: (a) two-dimensional (2D) U-DL and 3D U-DL using 2D CT slices and 3D CT volumes, respectively, as input, (b) U-DLs using CT images of different resolutions as input, and (c) U-DLs with and without automated cropping of the bladder as an image preprocessing step. The segmentation accuracy relative to the reference standard was quantified by six measures: average volume intersection ratio (AVI), average percent volume error (AVE), average absolute volume error (AAVE), average minimum distance (AMD), average Hausdorff distance (AHD), and the average Jaccard index (AJI). As a baseline, the results from our previous DCNN-LS method were used. ResultsIn the test set, the best 2D U-DL model achieved AVI, AVE, AAVE, AMD, AHD, and AJI values of 93.49.5%, -4.2 +/- 14.2%, 9.2 +/- 11.5%, 2.7 +/- 2.5mm, 9.7 +/- 7.6mm, 85.0 +/- 11.3%, respectively, while the corresponding measures by the best 3D U-DL were 90.6 +/- 11.9%, -2.3 +/- 21.7%, 11.5 +/- 18.5%, 3.1 +/- 3.2mm, 11.4 +/- 10.0mm, and 82.6 +/- 14.2%, respectively. For comparison, the corresponding values obtained with the baseline method were 81.9 +/- 12.1%, 10.2 +/- 16.2%, 14.0 +/- 13.0%, 3.6 +/- 2.0mm, 12.8 +/- 6.1mm, and 76.2 +/- 11.8%, respectively, for the same test set. The improvement for all measures between the best U-DL and the DCNN-LS were statistically significant (P<0.001). ConclusionCompared to a previous DCNN-LS method, which depended on a user-input bounding box, the U-DL provided more accurate bladder segmentation and was more automated than the previous approach.
引用
收藏
页码:1752 / 1765
页数:14
相关论文
共 50 条
  • [21] Pancreas Segmentation in Abdominal CT Images with U-Net Model
    Kurnaz, Ender
    Ceylan, Rahime
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [22] EfficientNet family U-Net models for deep learning semantic segmentation of kidney tumors on CT images
    Abdelrahman, Abubaker
    Viriri, Serestina
    FRONTIERS IN COMPUTER SCIENCE, 2023, 5
  • [23] Deep learning approaches based improved light weight U-Net with attention module for optic disc segmentation
    R. Shalini
    Varun P. Gopi
    Physical and Engineering Sciences in Medicine, 2022, 45 : 1111 - 1122
  • [24] Deep learning approaches based improved light weight U-Net with attention module for optic disc segmentation
    Shalini, R.
    Gopi, Varun P.
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2022, 45 (04) : 1111 - 1122
  • [25] RURAL SETTLEMENTS SEGMENTATION BASED ON DEEP LEARNING U-NET USING REMOTE SENSING IMAGES
    Aamir, Zakaria
    Seddouki, Mariem
    Himmy, Oussama
    Maanan, Mehdi
    Tahiri, Mohamed
    Rhinane, Hassan
    GEOINFORMATION WEEK 2022, VOL. 48-4, 2023, : 1 - 5
  • [26] MULTIMODAL SEGMENTATION BASED ON A NOVEL 3D U-NET DEEP LEARNING ARCHITECTURE
    Swaroopa, K. M.
    Chetty, Girija
    2021 IEEE ASIA-PACIFIC CONFERENCE ON COMPUTER SCIENCE AND DATA ENGINEERING (CSDE), 2021,
  • [27] Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information
    Allah, Ahmed M. Gab
    Sarhan, Amany M.
    Elshennawy, Nada M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [28] Breast tumor segmentation in ultrasound images: comparing U-net and U-net + +
    de Oliveira, Carlos Eduardo Gonçalves
    Vieira, Sílvio Leão
    Paranaiba, Caio Felipe Brito
    Itikawa, Emerson Nobuyuki
    Research on Biomedical Engineering, 2025, 41 (01)
  • [29] Adrenal Tumor Segmentation on U-Net: A Study About Effect of Different Parameters in Deep Learning
    Solak, Ahmet
    Ceylan, Rahime
    Bozkurt, Mustafa Alper
    Cebeci, Hakan
    Koplay, Mustafa
    VIETNAM JOURNAL OF COMPUTER SCIENCE, 2024, 11 (01) : 111 - 135
  • [30] Remote Sensing Image Segmentation for Aircraft Recognition Using U-Net as Deep Learning Architecture
    Shaar, Fadi
    Yilmaz, Arif
    Topcu, Ahmet Ercan
    Alzoubi, Yehia Ibrahim
    APPLIED SCIENCES-BASEL, 2024, 14 (06):