Elucidating the Proton Transport Pathways in Liquid Imidazole with First-Principles Molecular Dynamics

被引:22
|
作者
Long, Zhuoran [2 ]
Atsango, Austin O. [1 ]
Napoli, Joseph A. [1 ]
Markland, Thomas E. [1 ]
Tuckerman, Mark E. [2 ,3 ,4 ]
机构
[1] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
[2] NYU, Dept Chem, New York, NY 10003 USA
[3] NYU, Courant Inst Math Sci, New York, NY 10003 USA
[4] NYU Shanghai, NYU ECNU Ctr Computat Chem, Shanghai 200062, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2020年 / 11卷 / 15期
基金
美国国家科学基金会;
关键词
POROUS COORDINATION POLYMERS; SOLID-STATE; EXCESS PROTON; MOBILITY; CONDUCTIVITY; SOLVATION; MECHANISM; IONS; ACID; IMMOBILIZATION;
D O I
10.1021/acs.jpclett.0c01744
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Imidazole is a promising anhydrous proton conductor with a high conductivity comparable to that of water at a similar temperature relative to its melting point. Previous theoretical studies of the mechanism of proton transport in imidazole have relied either on empirical models or on ab initio trajectories that have been too short to draw significant conclusions. Here, we present the results of multiple time-step ab initio molecular dynamics simulations of an excess proton in liquid imidazole reaching 1 ns in total simulation time. We find that the proton transport is dominated by structural diffusion, with the diffusion constant of the proton defect being similar to 8 times higher than that of self-diffusion of the imidazole molecules. By using correlation function analysis, we decompose the mechanism for proton transport into a series of first-order processes and show that the proton transport mechanism occurs over three distinct time and length scales. Although the mechanism at intermediate times is dominated by hopping along pseudo-one-dimensional chains, at longer times the overall rate of diffusion is limited by the re-formation of these chains. These results provide a more complete picture of the traditional idealized Grotthuss structural diffusion mechanism.
引用
收藏
页码:6156 / 6163
页数:8
相关论文
共 50 条
  • [31] First-principles molecular dynamics study of proton transfer mechanism in bovine cytochrome c oxidase
    Kamiya, Katsumasa
    Boero, Mauro
    Tateno, Masaru
    Shiraishi, Kenji
    Oshiyama, Atsushi
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (36)
  • [32] Large timesteps in first-principles molecular dynamics simulations
    Tsuchida, E
    Terakura, K
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2001, 70 (03) : 924 - 925
  • [33] First-principles investigation of transient dynamics of molecular devices
    Zhang, Lei
    Xing, Yanxia
    Wang, Jian
    PHYSICAL REVIEW B, 2012, 86 (15)
  • [34] Liquid-liquid phase transformation in silicon: Evidence from first-principles molecular dynamics simulations
    Jakse, N.
    Pasturel, A.
    PHYSICAL REVIEW LETTERS, 2007, 99 (20)
  • [35] Structure and Dynamics of Proton Transfer in Liquid Imidazole. A Molecular Dynamics Simulation
    Li, Ailin
    Cao, Zhen
    Li, Yao
    Yan, Tianying
    Shen, Panwen
    JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (42): : 12793 - 12800
  • [36] First-Principles Molecular Dynamics at a Constant Electrode Potential
    Bonnet, Nicephore
    Morishita, Tetsuya
    Sugino, Osamu
    Otani, Minoru
    PHYSICAL REVIEW LETTERS, 2012, 109 (26)
  • [37] Transparent interface between classical molecular dynamics and first-principles molecular dynamics
    Du, MH
    Cheng, HP
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2003, 93 (01) : 1 - 8
  • [38] First-principles molecular dynamics of metals: A Lagrangian formulation
    Stengel, M
    De Vita, A
    PHYSICAL REVIEW B, 2000, 62 (23): : 15283 - 15286
  • [39] Water on surfaces from first-principles molecular dynamics
    游佩桅
    徐纪玉
    张萃
    孟胜
    ChinesePhysicsB, 2020, 29 (11) : 51 - 57
  • [40] First-principles molecular dynamics simulations in a continuum solvent
    Fattebert, JL
    Gygi, F
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2003, 93 (02) : 139 - 147