This paper is a continuation of our paper about boundary rigidity and filling minimality of metrics close to flat ones. We show that compact regions close to a hyperbolic one are boundary distance rigid and strict minimal fillings. We also provide a more invariant view on the approach used in the above-mentioned paper.
机构:
RUSSIAN ACAD SCI, VA STEKLOV MATH INST, ST PETERSBURG BRANCH, ST PETERSBURG 191011, RUSSIARUSSIAN ACAD SCI, VA STEKLOV MATH INST, ST PETERSBURG BRANCH, ST PETERSBURG 191011, RUSSIA
BURAGO, D
IVANOV, S
论文数: 0引用数: 0
h-index: 0
机构:
RUSSIAN ACAD SCI, VA STEKLOV MATH INST, ST PETERSBURG BRANCH, ST PETERSBURG 191011, RUSSIARUSSIAN ACAD SCI, VA STEKLOV MATH INST, ST PETERSBURG BRANCH, ST PETERSBURG 191011, RUSSIA
机构:
RUSSIAN ACAD SCI, VA STEKLOV MATH INST, ST PETERSBURG BRANCH, ST PETERSBURG 191011, RUSSIARUSSIAN ACAD SCI, VA STEKLOV MATH INST, ST PETERSBURG BRANCH, ST PETERSBURG 191011, RUSSIA
BURAGO, D
IVANOV, S
论文数: 0引用数: 0
h-index: 0
机构:
RUSSIAN ACAD SCI, VA STEKLOV MATH INST, ST PETERSBURG BRANCH, ST PETERSBURG 191011, RUSSIARUSSIAN ACAD SCI, VA STEKLOV MATH INST, ST PETERSBURG BRANCH, ST PETERSBURG 191011, RUSSIA