MicroRNAs in somatic cell reprogramming

被引:36
作者
Bao, Xichen
Zhu, Xihua
Liao, Baojian
Benda, Christina
Zhuang, Qiang
Pei, Duanqing
Qin, Baoming [1 ]
Esteban, Miguel A.
机构
[1] Chinese Acad Sci, Key Lab Regenerat Biol, Guangzhou 510530, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
PLURIPOTENT STEM-CELLS; NONCODING RNA; HUMAN ES; MOUSE; EXPRESSION; MIR-302; DIFFERENTIATION; GENERATION; TARGETS; GENES;
D O I
10.1016/j.ceb.2012.12.004
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The generation of induced pluripotent stem (iPS) cells by exogenous transcription factors involves a comprehensive rearrangement of cellular functions, including the microRNA profile. The resulting cell lines are similar to embryonic stem (ES) cells and have therefore raised much interest for in vitro studies and the perspective of clinical application. Yet, nnicroRNAs are not mere listeners of the reprogramming orchestra but play an active role in the process. In consequence, overexpression or suppression of individual microRNAs has profound effects in colony formation efficiency, and in combination they can produce iPS cells without added transcription factors. Moreover, variations in microRNA expression of iPS/ES cells can predict their differentiation potential and may have consequences at other levels. Altogether, these findings highlight the relevance of pursuing further these studies.
引用
收藏
页码:208 / 214
页数:7
相关论文
共 50 条
  • [21] MicroRNA-mediated regulation of extracellular matrix formation modulates somatic cell reprogramming
    Li, Zhonghan
    Dang, Jason
    Chang, Kung-Yen
    Rana, Tariq M.
    [J]. RNA, 2014, 20 (12) : 1900 - 1915
  • [22] Chromatin accessibility in canine stromal cells and its implications for canine somatic cell reprogramming
    Questa, Maria
    Moshref, Maryam
    Jimenez, Robert J.
    Lopez-Cervantes, Veronica
    Crawford, Charles K.
    Settles, Matthew L.
    Ross, Pablo J.
    Kol, Amir
    [J]. STEM CELLS TRANSLATIONAL MEDICINE, 2021, 10 (03) : 441 - 454
  • [23] Regulation of L-Threonine Dehydrogenase in Somatic Cell Reprogramming
    Han, Chuanchun
    Gu, Hao
    Wang, Jiaxu
    Lu, Weiguang
    Mei, Yide
    Wu, Mian
    [J]. STEM CELLS, 2013, 31 (05) : 953 - 965
  • [24] Non-viral approaches for somatic cell reprogramming into cardiomyocytes
    Zhou, Wei
    Ma, Tianhua
    Ding, Sheng
    [J]. SEMINARS IN CELL & DEVELOPMENTAL BIOLOGY, 2022, 122 : 28 - 36
  • [25] Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming
    Li, Wenlin
    Ding, Sheng
    [J]. TRENDS IN PHARMACOLOGICAL SCIENCES, 2010, 31 (01) : 36 - 45
  • [26] MicroRNAs and reprogramming
    Chang, Hao-Ming
    Gregory, Richard I.
    [J]. NATURE BIOTECHNOLOGY, 2011, 29 (06) : 499 - 500
  • [27] Critical POU domain residues confer Oct4 uniqueness in somatic cell reprogramming
    Jin, Wensong
    Wang, Lei
    Zhu, Fei
    Tan, Weiqi
    Lin, Wei
    Chen, Dahua
    Sun, Qinmiao
    Xia, Zongping
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [28] Somatic cell reprogramming as a tool for neurodegenerative diseases
    Ebrahimi, Ayyub
    Keske, Ezgi
    Mehdipor, Ahmad
    Ebrahimi-Kalan, Abbas
    Ghorbani, Meysam
    [J]. BIOMEDICINE & PHARMACOTHERAPY, 2019, 112
  • [29] Nonintegrating Human Somatic Cell Reprogramming Methods
    Schlaeger, Thorsten M.
    [J]. ENGINEERING AND APPLICATION OF PLURIPOTENT STEM CELLS, 2018, 163 : 1 - 21
  • [30] miR-34 miRNAs provide a barrier for somatic cell reprogramming
    Choi, Yong Jin
    Lin, Chao-Po
    Ho, Jaclyn J.
    He, Xingyue
    Okada, Nobuhiro
    Bu, Pengcheng
    Zhong, Yingchao
    Kim, Sang Yong
    Bennett, Margaux J.
    Chen, Caifu
    Ozturk, Arzu
    Hicks, Geoffrey G.
    Hannon, Greg J.
    He, Lin
    [J]. NATURE CELL BIOLOGY, 2011, 13 (11) : 1353 - U154