Electronic Structure, Charge and Orbital order and Metal-insulator Transition in Nickelates

被引:0
作者
Misra, D. [1 ]
Taraphder, A. [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Phys, Kharagpur 721302, W Bengal, India
来源
SOLID STATE PHYSICS, VOL 57 | 2013年 / 1512卷
关键词
Metal-insulator transition; Band structure; Density of states; BAND-STRUCTURE; NDNIO3;
D O I
10.1063/1.4790921
中图分类号
O59 [应用物理学];
学科分类号
摘要
In the series RNiO3, all the members except LaNiO3 are insulators at T=0K while LaNiO3 is a strongly correlated metal. Rare earth Nickelates have a sharp transition from a high temperature paramagnetic metallic state to a low temperature antiferromagnetic insulator at finite temperature TMI, which increases systematically as the atomic number of the rare-earth ions increases. It can be tuned by external parameters like strain, hydrostatic pressure and electric field. The magnetic and resistive transitions are coupled for NdNiO3 and PrNiO3, but independent for the other members of the series. In the present paper we explain the difference in the observed ground states of RNiO3 (R=La, Nd, Pr) by calculating their band structure and possible orbital and charge order. We also discuss the effects of disorder thereof.
引用
收藏
页码:82 / 83
页数:2
相关论文
共 50 条
[31]   Metal-insulator transition in zirconium oxynitride films [J].
Wu, Jiankun ;
Li, Zhaoguo ;
Peng, Liping ;
Yi, Yong ;
Zhang, Jicheng .
PHYSICA B-CONDENSED MATTER, 2022, 624
[32]   Metal-insulator transition in quantum dot arrays [J].
Shailos, A ;
El Hassan, M ;
Prasad, C ;
Bird, JP ;
Ferry, DK ;
Lin, LH ;
Aoki, N ;
Nakao, K ;
Ochiai, Y ;
Ishibashi, K ;
Aoyagi, Y ;
Sugano, T .
SUPERLATTICES AND MICROSTRUCTURES, 2000, 27 (5-6) :311-314
[33]   Harnessing the metal-insulator transition for tunable metamaterials [J].
Charipar, Nicholas A. ;
Charipar, Kristin M. ;
Kim, Heungsoo ;
Bingham, Nicholas S. ;
Suess, Ryan J. ;
Mathews, Scott A. ;
Auyeung, Raymond C. Y. ;
Pique, Alberto .
METAMATERIALS, METADEVICES, AND METASYSTEMS 2017, 2017, 10343
[34]   Development of VO2-Nanoparticle-Based Metal-Insulator Transition Electronic Ink [J].
Vaseem, Mohammad ;
Zhen, Su ;
Yang, Shuai ;
Li, Weiwei ;
Shamim, Atif .
ADVANCED ELECTRONIC MATERIALS, 2019, 5 (05)
[35]   Fermi-surface reconstruction close to a pressure-induced metal-insulator transition [J].
Wosnitza, J ;
Hagel, J ;
Stockert, O ;
Pfleiderer, C ;
Schlueter, JA ;
Mohtasham, J ;
Gard, GL .
JOURNAL DE PHYSIQUE IV, 2004, 114 :277-281
[36]   Electronic structure and metal-insulator transition in crystalline magnetic phase-change material Ge1-xFexTe [J].
Liu, Jindong ;
Cheng, Xiaomin ;
Ton, Fei ;
Miao, Xiangshui .
JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 650 :70-74
[37]   Metal-insulator transition in type II heterostructures based on transition metal dichalcogenides [J].
Ratnikov, Pavel V. .
PHYSICS LETTERS A, 2024, 517
[38]   Metal-insulator transition in an isoelectronically doped transition metal dichalcogenide and its heterostructures [J].
Hou, Yutang ;
Wang, Yu ;
Yin, Lei ;
Wen, Yao ;
Hou, Xinjie ;
Cheng, Ruiqing ;
He, Jun .
FRONTIERS OF PHYSICS, 2025, 20 (04)
[39]   Charge and spin diffusion on the metallic side of the metal-insulator transition: self-consistent approach [J].
Wellens, Thomas ;
Jalabert, Rodolfo A. .
PHYSICAL REVIEW B, 2016, 94 (14)
[40]   Electrically-driven metal-insulator transition of vanadium dioxide thin films in a metal-oxide-insulator-metal device structure [J].
Qiu, Dong-Hong ;
Wen, Qi-Ye ;
Yang, Qing-Hui ;
Chen, Zhi ;
Jing, Yu-Lan ;
Zhang, Huai-Wu .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 27 :140-144