Periodic solutions to a second order nonlinear neutral functional differential equation in the critical case

被引:6
作者
Lu, SP [1 ]
Gui, ZJ
Ge, WG
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241000, Anhui, Peoples R China
[2] Hainan Normal Univ, Dept Math, Haikou 571158, Peoples R China
[3] Beijing Inst Technol, Dept Appl Math, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
periodic solution; Mawhin's continuation theorem; critical case;
D O I
10.1016/j.na.2005.06.055
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the authors study the existence of periodic solutions for a second order neutral functional differential equation (x(t) - cx(t - tau))'' = f(x(t))x'(t) + g(t, x(t - mu(t))) + e(t) in the critical case vertical bar c vertical bar = 1. By employing Mawhin's continuation theorem and some analysis techniques, sufficient conditions are given for the existence of periodic solutions. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1587 / 1607
页数:21
相关论文
共 14 条
[1]   Periodic solutions of a second order nonlinear system [J].
Cac, NP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 214 (01) :219-232
[2]  
Deimling K., 2010, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[3]  
Hale J. K., 1977, Applied Mathematical Sciences, V3
[4]   Periodic solutions for a kind of second-order neutral differential systems with deviating arguments [J].
Lu, SP ;
Ge, WG .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (03) :719-732
[5]   Periodic solutions to a kind of neutral functional differential equation in the critical case [J].
Lu, SP ;
Ge, WG ;
Zheng, ZX .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 293 (02) :462-475
[6]   Periodic solutions to neutral differential equation with deviating arguments [J].
Lu, SP ;
Ge, WG ;
Zheng, ZX .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 152 (01) :17-27
[7]   Periodic solutions for a kind of Lienard equation with a deviating argument [J].
Lu, SP ;
Ge, WG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (01) :231-243
[8]   Periodic solutions for a kind of second order differential equation with multiple deviating arguments [J].
Lu, SP ;
Ge, WG .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (01) :195-209
[9]   On the existence of periodic solutions for neutral functional differential equation [J].
Lu, SP ;
Ge, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (07) :1285-1306
[10]   Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument [J].
Lu, SP ;
Ge, WG .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 56 (04) :501-514