BOUNDEDNESS OF SINGULAR INTEGRALS AND THEIR COMMUTATORS WITH BMO FUNCTIONS ON HARDY SPACES

被引:0
作者
The Anh Bui [1 ]
Xuan Thinh Duong [1 ]
机构
[1] Macquarie Univ, Dept Math, N Ryde, NSW 2109, Australia
基金
澳大利亚研究理事会;
关键词
WEIGHTED NORM INEQUALITIES; RIESZ TRANSFORMS; L-P; ELLIPTIC-OPERATORS; MANIFOLDS; BOUNDS; THEOREMS; DUALITY; KERNELS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish sufficient conditions for a singular integral T to be bounded from certain Hardy spaces H-L(P) to Lebesgue spaces L-P, 0 < p <= 1, and for the commutator of T and a BMO function to be weak-type bounded on Hardy space H-L(1). We then show that our sufficient conditions are applicable to the following cases: (i) T is the Riesz transform or a square function associated with the Laplace- Beltrami operator on a doubling Riemannian manifold, (ii) T is the Riesz transform associated with the magnetic Schrodinger operator on a Euclidean space, and (iii) T = g(L) is a singular integral operator defined from the holomorphic functional calculus of an operator L or the spectral multiplier of a non-negative self-adjoint operator L.
引用
收藏
页码:459 / 494
页数:36
相关论文
共 41 条
[1]  
Amann H., 1994, Differ. Integr. Equ, V7, P613
[2]  
[Anonymous], 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
[3]  
[Anonymous], 2004, ANAL HEAT EQUATIONS
[4]   Riesz transform on manifolds and heat kernel regularity [J].
Auscher, P ;
Coulhon, T ;
Duong, XT ;
Hofmann, S .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2004, 37 (06) :911-957
[5]   Hardy spaces and divergence operators on strongly Lipschitz domains of Rn [J].
Auscher, P ;
Russ, E .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 201 (01) :148-184
[6]  
Auscher P., BOUNDEDNESS BA UNPUB
[7]   Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part IV: Riesz transforms on manifolds and weights [J].
Auscher, Pascal ;
Martell, Jose Maria .
MATHEMATISCHE ZEITSCHRIFT, 2008, 260 (03) :527-539
[8]   Hardy spaces of differential forms on Riemannian manifolds [J].
Auscher, Pascal ;
McIntosh, Alan ;
Russ, Emmanuel .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :192-248
[9]   Maximal inequalities and Riesz transform estimates on LP spaces for Schrodinger operators with nonnegative potentials [J].
Auscher, Pascal ;
Ben Ali, Besma .
ANNALES DE L INSTITUT FOURIER, 2007, 57 (06) :1975-2013
[10]  
Blunck S, 2003, REV MAT IBEROAM, V19, P919