A simple method of preparing graphene-coated Li[Li0.2Mn0.13Co0.13]O2 for lithium-ion batteries

被引:42
作者
He, Zhenjiang [1 ]
Wang, Zhixing [1 ]
Guo, Huajun [1 ]
Li, Xinhai [1 ]
Wu Xianwen [1 ]
Yue, Peng [1 ]
Wang, Jiexi [1 ]
机构
[1] Cent S Univ, Sch Met Sci & Engn, Changsha 410083, Peoples R China
关键词
Lithium-ion batteries; Surfaces; Graphene coating; Microstructure; IRREVERSIBLE CAPACITY LOSS; CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; SURFACE MODIFICATION; COMPOSITE CATHODES; SOLID-SOLUTION; BEHAVIOR;
D O I
10.1016/j.matlet.2012.09.115
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene-coated Li[Li0.2Mn0.13Co0.13]O-2 is synthesized by the spray drying method. The morphology and electrochemical performances of the pristine and graphene-coated cathodes have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), charge-discharge measurements, as well as Ac impedance spectroscopy. At 250 mA g(-1), the pristine and graphene-coated samples deliver capacities of similar to 141 and 153 mAh g(-1) with capacity retention of 80 and 97% in 50 cycles, respectively. An analysis of the charge-discharge capacity values and electrochemical impedance spectroscopy (EIS) measurements reveal that the improved electrochemical performances of the graphene-coated sample are due to the suppression of the solid-electrolyte interfacial (SEI) layer and the enhancement of surface electronic conductivity. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:261 / 264
页数:4
相关论文
共 24 条
[1]   Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts [J].
Gao, J. ;
Manthiram, A. .
JOURNAL OF POWER SOURCES, 2009, 191 (02) :644-647
[2]   High capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-V2O5 composite cathodes with low irreversible capacity loss for lithium ion batteries [J].
Gao, J. ;
Kim, J. ;
Manthiram, A. .
ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (01) :84-86
[3]   A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment [J].
Ito, Atsushi ;
Li, Decheng ;
Ohsawa, Yasuhiko ;
Sato, Yuichi .
JOURNAL OF POWER SOURCES, 2008, 183 (01) :344-346
[4]   Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution [J].
Jarvis, Karalee A. ;
Deng, Zengqiang ;
Allard, Lawrence F. ;
Manthiram, Arumugam ;
Ferreira, Paulo J. .
CHEMISTRY OF MATERIALS, 2011, 23 (16) :3614-3621
[5]   A Comparison of High Capacity xLi2MnO3•(1-x)LiMO2 (M=Ni,Co,Mn) Cathodes in Lithium-Ion Cells with Li4Ti5O12- and Carbon-Encapsulated Anatase TiO2 Anodes [J].
Kang, S. -H. ;
Pol, V. G. ;
Belharouak, I. ;
Thackeray, M. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (03) :A267-A271
[6]   High Capacity Li[Li0.2Mn0.54Ni0.13Co0.13]O2-VO2(B) Composite Cathodes with Controlled Irreversible Capacity Loss for Lithium-Ion Batteries [J].
Lee, E. S. ;
Manthiram, A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (01) :A47-A50
[7]   Processable aqueous dispersions of graphene nanosheets [J].
Li, Dan ;
Mueller, Marc B. ;
Gilje, Scott ;
Kaner, Richard B. ;
Wallace, Gordon G. .
NATURE NANOTECHNOLOGY, 2008, 3 (02) :101-105
[8]   Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability [J].
Li, J. ;
Kloepsch, R. ;
Stan, M. C. ;
Nowak, S. ;
Kunze, M. ;
Winter, M. ;
Passerini, S. .
JOURNAL OF POWER SOURCES, 2011, 196 (10) :4821-4825
[9]   Electrochemical behavior of LiFePO4/C cathode material for rechargeable lithium batteries [J].
Liao, XZ ;
Ma, ZF ;
He, YS ;
Zhang, XM ;
Wang, L ;
Jiang, Y .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (10) :A1969-A1973
[10]   Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4 [J].
Liu, Bing ;
Zhang, Qian ;
He, Shici ;
Sato, Yuichi ;
Zheng, Junwei ;
Li, Decheng .
ELECTROCHIMICA ACTA, 2011, 56 (19) :6748-6751