Multi-View Spectral Clustering via Integrating Global and Local Graphs

被引:20
|
作者
Xie, Deyan [1 ]
Gao, Quanxue [1 ]
Wang, Qianqian [1 ]
Xiao, Song [1 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Multi-view; spectral clustering; local graph; global graph; target rank;
D O I
10.1109/ACCESS.2019.2892175
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robust multi-view spectral clustering (RMSC) minimizes the rank of probability matrix to recover a common transition probability matrix from the matrices calculated by each single viewand achieves promising performance. However, for the clustering task, the underlying structure of the low-rank probability matrix is readily accessible. Yet, RMSC ignores a priori target rank information, and it does not efficiently depict the complementary information between different views. To address these problems, we propose a novel multi-view Markov chain spectral clustering method with a priori rank information. To be specific, we encourage the target rank constraint by minimizing the partial sum of singular values instead of the nuclear norm and construct a global graph from the concatenated features to exploit the complementary information embedded in different views. The objective function can be optimized efficiently by using the augmented Lagrangian multiplier algorithm. Extensive experimental results on one synthetic and eight benchmark datasets demonstrate that the proposed method outperforms the state-of-the-art approaches.
引用
收藏
页码:31197 / 31206
页数:10
相关论文
共 50 条
  • [1] Incomplete multi-view clustering via local and global bagging of anchor graphs
    Li, Ao
    Xu, Haoyue
    Feng, Cong
    Yang, Hailu
    Xu, Shibiao
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 248
  • [2] Multi-view spectral clustering via common structure maximization of local and global representations
    Hao, Wenyu
    Pang, Shanmin
    Chen, Zhikai
    NEURAL NETWORKS, 2021, 143 : 595 - 606
  • [3] Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding
    Hu, Zhanxuan
    Nie, Feiping
    Wang, Rong
    Li, Xuelong
    INFORMATION FUSION, 2020, 55 : 251 - 259
  • [4] Multi-view clustering via spectral partitioning and local refinement
    Chikhi, Nacim Fateh
    INFORMATION PROCESSING & MANAGEMENT, 2016, 52 (04) : 618 - 627
  • [5] Multi-View Spectral Clustering With Incomplete Graphs
    Zhuge, Wenzhang
    Luo, Tingjin
    Tao, Hong
    Hou, Chenping
    Yi, Dongyun
    IEEE ACCESS, 2020, 8 : 99820 - 99831
  • [6] Multi-view Graph Clustering via Efficient Global-Local Spectral Embedding Fusion
    Wang, Penglei
    Wu, Danyang
    Wang, Rong
    Nie, Feiping
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 3268 - 3276
  • [7] Multi-view spectral clustering via robust local subspace learning
    Lin Feng
    Lei Cai
    Yang Liu
    Shenglan Liu
    Soft Computing, 2017, 21 : 1937 - 1948
  • [8] Multi-view spectral clustering via robust local subspace learning
    Feng, Lin
    Cai, Lei
    Liu, Yang
    Liu, Shenglan
    SOFT COMPUTING, 2017, 21 (08) : 1937 - 1948
  • [9] Multi-view Spectral Clustering via Integrating Label and Data Graph Learning
    El Hajjar, Sally
    Dornaika, Fadi
    Abdallah, Fahed
    Omrani, Hichem
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 109 - 120
  • [10] Multi-view Spectral Clustering With Adaptive Local Neighbors
    Wang, Lijuan
    Xing, Jinping
    Yin, Ming
    Huang, Xinxuan
    PAAP 2021: 2021 12TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING, 2021, : 157 - 161