On Gradient Ricci Solitons

被引:116
作者
Munteanu, Ovidiu [1 ]
Sesum, Natasa [2 ]
机构
[1] Columbia Univ, Dept Math, New York, NY 10027 USA
[2] Univ Penn, Dept Math, Philadelphia, PA 19104 USA
关键词
Ricci solitons; Harmonic functions; COMPLETE KAHLER-MANIFOLDS; HARMONIC-FUNCTIONS; SHRINKING; CLASSIFICATION; CURVATURE;
D O I
10.1007/s12220-011-9252-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the first part of the paper we derive integral curvature estimates for complete gradient shrinking Ricci solitons. Our results and the recent work in M. Fernandez-Lopez and E. Garcia-Rio, Rigidity of shrinking Ricci solitons in Math. Z. (2011) classify complete gradient shrinking Ricci solitons with harmonic Weyl tensor. In the second part of the paper we address the issue of existence of harmonic functions on gradient shrinking Kahler and gradient steady Ricci solitons. Consequences to the structure of shrinking and steady solitons at infinity are also discussed.
引用
收藏
页码:539 / 561
页数:23
相关论文
共 32 条
[1]  
[Anonymous], 2010, RECENT ADV GEOMETRIC
[2]  
[Anonymous], ARXIVMATHDG0303109
[3]  
Böhm C, 2008, ANN MATH, V167, P1079
[4]  
Cao H.-D., ARXIV09033927
[5]  
Cao HD, 1996, ELLIPTIC AND PARABOLIC METHODS IN GEOMETRY, P1
[6]  
Cao HD, 2010, J DIFFER GEOM, V85, P175
[7]  
Cao X., 2011, COMMUN CONTEMP MATH, V13, P1
[8]   Compact gradient shrinking Ricci solitons with positive curvature operator [J].
Cao, Xiaodong .
JOURNAL OF GEOMETRIC ANALYSIS, 2007, 17 (03) :425-433
[9]  
Carrillo JA, 2009, COMMUN ANAL GEOM, V17, P721
[10]  
Chen BL, 2009, J DIFFER GEOM, V82, P363