Strategies of Multi-Step-ahead Forecasting for Blood Glucose Level using LSTM Neural Networks: A Comparative Study

被引:5
|
作者
El Idrissi, Touria [1 ]
Idri, Ali [2 ,3 ]
Kadi, Ilham [2 ]
Bakkoury, Zohra [1 ]
机构
[1] Univ Mohammed V Rabat, Dept Comp Sci, EMI, Rabat, Morocco
[2] Univ Mohammed V Rabat, ENSIAS, Software Project Management Res Team, Rabat, Morocco
[3] Univ Mohammed VI Polytech, Complex Syst Engn & Human Syst, Ben Guerir, Morocco
来源
PROCEEDINGS OF THE 13TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 5: HEALTHINF | 2020年
关键词
Multi-Step-ahead Forecasting; Long-Short-Term Memory Network; Blood Glucose; Prediction; Diabetes;
D O I
10.5220/0008911303370344
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Predicting the blood glucose level (BGL) is crucial for self-management of Diabetes. In general, a BGL prediction is done based on the previous measurements of BGL, which can be taken either (manually) by using sticks or (automatically) by using continuous glucose monitoring (CGM) devices. To allow the diabetic patients to take appropriate actions, the BGL predictions should be done ahead of time; thus a multi-step ahead prediction is suitable. Therefore, many Multi-Step-ahead Forecasting (MSF) strategies have been developed and evaluated, and can be categorized in five types: Recursive, Direct, MIMO (for Multiple Input Multiple Output), DirMO (combining Direct and MIMO) and DirRec (combining Direct and Recursive). However, none of them is known to be the best strategy in all contexts. The present study aims at: 1) reviewing the MSF strategies, and 2) determining the best strategy to fit with a LSTM Neural Network model. Hence, we evaluated and compared in terms of two performance criteria: Root-Mean-Square Error (RMSE) and Mean Absolute Error (MAE), the five MSF strategies using a LSTM Neural Network with an horizon of 30 minutes. The results show that there is no strategy that significantly outperformed others when using the Wilcoxon statistical test. However, when using the Sum Ranking Differences method, HMO is the best strategy for both RMSE and MAE criteria.
引用
收藏
页码:337 / 344
页数:8
相关论文
共 50 条
  • [1] Multi-step-ahead neural networks for flood forecasting
    Chang, Fi-John
    Chiang, Yen-Ming
    Chang, Li-Chiu
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2007, 52 (01): : 114 - 130
  • [2] Multi-Step-Ahead Monthly Streamflow Forecasting Using Convolutional Neural Networks
    Xingsheng Shu
    Yong Peng
    Wei Ding
    Ziru Wang
    Jian Wu
    Water Resources Management, 2022, 36 : 3949 - 3964
  • [3] Multi-Step-Ahead Monthly Streamflow Forecasting Using Convolutional Neural Networks
    Shu, Xingsheng
    Peng, Yong
    Ding, Wei
    Wang, Ziru
    Wu, Jian
    WATER RESOURCES MANAGEMENT, 2022, 36 (11) : 3949 - 3964
  • [4] Multi-step-ahead prediction of river flow using NARX neural networks and deep learning LSTM
    Hayder, Gasim
    Solihin, Mahmud Iwan
    Najwa, M. R. N.
    H2OPEN JOURNAL, 2022, 5 (01) : 42 - 59
  • [5] Multi-Step-Ahead Forecasting of Groundwater Level Using Model Ensemble Technique
    Nourani, Vahid
    Ghaneei, Parnian
    Sharghi, Elnaz
    PROCEEDINGS OF 7TH INTERNATIONAL CONFERENCE ON HARMONY SEARCH, SOFT COMPUTING AND APPLICATIONS (ICHSA 2022), 2022, 140 : 247 - 257
  • [6] Multi-step-ahead prediction using dynamic recurrent neural networks
    Parlos, AG
    Rais, OT
    Atiya, AF
    NEURAL NETWORKS, 2000, 13 (07) : 765 - 786
  • [7] Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control
    Chang, Fi-John
    Chen, Pin-An
    Lu, Ying-Ray
    Huang, Eric
    Chang, Kai-Yao
    JOURNAL OF HYDROLOGY, 2014, 517 : 836 - 846
  • [8] Multi-Step Ahead Water Level Forecasting Using Deep Neural Networks
    Sharafkhani, Fahimeh
    Corns, Steven
    Holmes, Robert
    WATER, 2024, 16 (21)
  • [9] A novel hybrid XAJ-LSTM model for multi-step-ahead flood forecasting
    Cui, Zhen
    Zhou, Yanlai
    Guo, Shenglian
    Wang, Jun
    Ba, Huanhuan
    He, Shaokun
    HYDROLOGY RESEARCH, 2021, 52 (06): : 1436 - 1454
  • [10] Multi-Step-Ahead Forecasting using Kernel Adaptive Filtering
    Garcia-Vega, Sergio
    Castellanos-Dominguez, German
    Verleysen, Michel
    Lee, John A.
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2132 - 2139