Parametric estimation for sub-fractional Ornstein-Uhlenbeck process

被引:39
作者
Mendy, Ibrahima [1 ]
机构
[1] Univ Ziguinchor, UFR Sci & Technol, Dept Math, Ziguinchor, Senegal
关键词
Least squares method; Sub-fractional Brownian motion; Sub-fractional Ornstein-Uhlenbec process; BROWNIAN-MOTION; RESPECT; TIME; SYSTEMS; DRIVEN; STATES;
D O I
10.1016/j.jspi.2012.10.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the parameter estimation problem for the sub-fractional Ornstein-Uhlenbeck process defined as X-0 = 0, dX(t) = theta X(t)dt+dS(t)(H), t >= 0, with parameter theta > 0, where S-H is a sub-fractional Brownian motion with index H > 1/2. We study the consistency and the asymptotic distribution of the least squares estimator (theta) over cap (t) of theta based on the observation {X-s,s is an element of [0,t]} as t ->infinity. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:663 / 674
页数:12
相关论文
共 46 条
[1]  
Alos A, 2003, STOCHASTICS STOCHAST, V75, P129
[2]   Stochastic calculus with respect to Gaussian processes [J].
Alòs, E ;
Mazet, O ;
Nualart, D .
ANNALS OF PROBABILITY, 2001, 29 (02) :766-801
[3]  
[Anonymous], 2004, STAT INFERENCE ERGOD, DOI DOI 10.1007/978-1-4471-3866-2
[4]   Asymptotic behavior of maximum likelihood estimator for time inhomogeneous diffusion processes [J].
Barczy, M. ;
Pap, G. .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (06) :1576-1593
[5]   Weak convergence towards two independent Gaussian processes from a unique Poisson process [J].
Bardina, Xavier ;
Bascompte, David .
COLLECTANEA MATHEMATICA, 2010, 61 (02) :191-204
[6]  
Basawa I.V., 1983, LECT NOTES STAT, V17
[7]  
Belfadi R., 2011, ARXIV11025491V1MATHP
[8]   Sub-fractional Brownian motion and its relation to occupation times [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STATISTICS & PROBABILITY LETTERS, 2004, 69 (04) :405-419
[9]  
Bojdecki T.L.G., 2011, STOCHASTIC PROCESSES, V122, P2134
[10]   PARTICLE SYSTEMS WITH QUASI-HOMOGENEOUS INITIAL STATES AND THEIR OCCUPATION TIME FLUCTUATIONS [J].
Bojdecki, Tomasz ;
Gorostiza, Luis G. ;
Talarczyk, Anna .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 :191-202