Parametric estimation for sub-fractional Ornstein-Uhlenbeck process

被引:39
作者
Mendy, Ibrahima [1 ]
机构
[1] Univ Ziguinchor, UFR Sci & Technol, Dept Math, Ziguinchor, Senegal
关键词
Least squares method; Sub-fractional Brownian motion; Sub-fractional Ornstein-Uhlenbec process; BROWNIAN-MOTION; RESPECT; TIME; SYSTEMS; DRIVEN; STATES;
D O I
10.1016/j.jspi.2012.10.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the parameter estimation problem for the sub-fractional Ornstein-Uhlenbeck process defined as X-0 = 0, dX(t) = theta X(t)dt+dS(t)(H), t >= 0, with parameter theta > 0, where S-H is a sub-fractional Brownian motion with index H > 1/2. We study the consistency and the asymptotic distribution of the least squares estimator (theta) over cap (t) of theta based on the observation {X-s,s is an element of [0,t]} as t ->infinity. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:663 / 674
页数:12
相关论文
共 46 条
  • [1] Alos A, 2003, STOCHASTICS STOCHAST, V75, P129
  • [2] Stochastic calculus with respect to Gaussian processes
    Alòs, E
    Mazet, O
    Nualart, D
    [J]. ANNALS OF PROBABILITY, 2001, 29 (02) : 766 - 801
  • [3] [Anonymous], 2004, STAT INFERENCE ERGOD, DOI DOI 10.1007/978-1-4471-3866-2
  • [4] Asymptotic behavior of maximum likelihood estimator for time inhomogeneous diffusion processes
    Barczy, M.
    Pap, G.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2010, 140 (06) : 1576 - 1593
  • [5] Weak convergence towards two independent Gaussian processes from a unique Poisson process
    Bardina, Xavier
    Bascompte, David
    [J]. COLLECTANEA MATHEMATICA, 2010, 61 (02) : 191 - 204
  • [6] Basawa I.V., 1983, LECT NOTES STAT, V17
  • [7] Belfadi R., 2011, ARXIV11025491V1MATHP
  • [8] Sub-fractional Brownian motion and its relation to occupation times
    Bojdecki, T
    Gorostiza, LG
    Talarczyk, A
    [J]. STATISTICS & PROBABILITY LETTERS, 2004, 69 (04) : 405 - 419
  • [9] Bojdecki T.L.G., 2011, STOCHASTIC PROCESSES, V122, P2134
  • [10] PARTICLE SYSTEMS WITH QUASI-HOMOGENEOUS INITIAL STATES AND THEIR OCCUPATION TIME FLUCTUATIONS
    Bojdecki, Tomasz
    Gorostiza, Luis G.
    Talarczyk, Anna
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2010, 15 : 191 - 202