Parameter estimation through ignorance

被引:14
|
作者
Du, Hailiang [1 ]
Smith, Leonard A. [1 ,2 ]
机构
[1] London Sch Econ, Ctr Anal Time Series, London WC2A 2AE, England
[2] Univ Oxford Pembroke Coll, Oxford OX1 1DW, England
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 01期
基金
英国经济与社会研究理事会;
关键词
DATA ASSIMILATION; SYSTEMS; INFORMATION; FORECASTS; MODELS; STATE;
D O I
10.1103/PhysRevE.86.016213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dynamical modeling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A relatively simple method of parameter estimation for nonlinear systems is introduced, based on variations in the accuracy of probability forecasts. It is illustrated on the logistic map, the Henon map, and the 12-dimensional Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This approach is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors or the ability of the model to shadow the observations. Direct measures of inadequacy in the model, the "implied ignorance," and the information deficit are introduced.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Fitting functional responses: Direct parameter estimation by simulating differential equations
    Rosenbaum, Benjamin
    Rall, Bjoern C.
    METHODS IN ECOLOGY AND EVOLUTION, 2018, 9 (10): : 2076 - 2090
  • [42] Evaluation of Planetary Boundary Layer Scheme Sensitivities for the Purpose of Parameter Estimation
    Nielsen-Gammon, John W.
    Hu, Xiao-Ming
    Zhang, Fuqing
    Pleim, Jonathan E.
    MONTHLY WEATHER REVIEW, 2010, 138 (09) : 3400 - 3417
  • [43] A recursive technique for tracking the feasible parameter set in bounded error estimation
    Casini, Marco
    Garulli, Andrea
    Vicino, Antonio
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2017, 31 (10) : 1456 - 1466
  • [44] Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks
    Liao, Shuohao
    Vejchodsky, Tomas
    Erban, Radek
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2015, 12 (108)
  • [45] Ensemble-Based Parameter Estimation in a Coupled General Circulation Model
    Liu, Y.
    Liu, Z.
    Zhang, S.
    Jacob, R.
    Lu, F.
    Rong, X.
    Wu, S.
    JOURNAL OF CLIMATE, 2014, 27 (18) : 7151 - 7162
  • [46] A PARTICLE SMOOTHER WITH SEQUENTIAL IMPORTANCE RESAMPLING FOR RADIATIVE TRANSFER PARAMETER ESTIMATION
    Montzka, C.
    Grant, J.
    Franssen, H-J. Hendricks
    Drusch, M.
    Vereecken, H.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 3431 - 3434
  • [47] Sequential parameter estimation for fluid-structure problems: Application to hemodynamics
    Bertoglio, Cristobal
    Moireau, Philippe
    Gerbeau, Jean-Frederic
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, 2012, 28 (04) : 434 - 455
  • [48] Application of particle filter to assess uncertainty for reservoir state and parameter estimation
    Akter, Farhana
    Imtiaz, Syed
    Zendehboudi, Sohrab
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 223
  • [49] An improved method for nonlinear parameter estimation: a case study of the Rossler model
    He, Wen-Ping
    Wang, Liu
    Jiang, Yun-Di
    Wan, Shi-Quan
    THEORETICAL AND APPLIED CLIMATOLOGY, 2016, 125 (3-4) : 521 - 528
  • [50] A variational approach for parameter estimation based on balanced proper orthogonal decomposition
    Altaf, M. U.
    McCabe, M. F.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 344 : 694 - 710