Parameter estimation through ignorance

被引:14
|
作者
Du, Hailiang [1 ]
Smith, Leonard A. [1 ,2 ]
机构
[1] London Sch Econ, Ctr Anal Time Series, London WC2A 2AE, England
[2] Univ Oxford Pembroke Coll, Oxford OX1 1DW, England
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 01期
基金
英国经济与社会研究理事会;
关键词
DATA ASSIMILATION; SYSTEMS; INFORMATION; FORECASTS; MODELS; STATE;
D O I
10.1103/PhysRevE.86.016213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dynamical modeling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A relatively simple method of parameter estimation for nonlinear systems is introduced, based on variations in the accuracy of probability forecasts. It is illustrated on the logistic map, the Henon map, and the 12-dimensional Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This approach is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors or the ability of the model to shadow the observations. Direct measures of inadequacy in the model, the "implied ignorance," and the information deficit are introduced.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Parameter Estimation Strategies in Thermodynamics
    Hoeller, Johannes
    Bickert, Patricia
    Schwartz, Patrick
    von Kurnatowski, Martin
    Kerber, Joachim
    Kuenzle, Niklaus
    Lorenz, Hilke-Marie
    Asprion, Norbert
    Blagov, Sergej
    Bortz, Michael
    CHEMENGINEERING, 2019, 3 (02) : 1 - 23
  • [32] ON MOVING AVERAGE PARAMETER ESTIMATION
    Sandgren, Niclas
    Stoica, Petre
    Babu, Prabhu
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 2348 - 2351
  • [33] Nonglobal Parameter Estimation Using Local Ensemble Kalman Filtering
    Bellsky, Thomas
    Berwald, Jesse
    Mitchell, Lewis
    MONTHLY WEATHER REVIEW, 2014, 142 (06) : 2150 - 2164
  • [34] Influence of Discretization Errors on Set-based Parameter Estimation
    Rumschinski, Philipp
    Shona-Laila, Dina
    Borchers, Steffen
    Findeisen, Rolf
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 296 - 301
  • [35] Revisiting Hammerstein system identification through the Two-Stage Algorithm for bilinear parameter estimation
    Wang, Jiandong
    Zhang, Qinghua
    Ljung, Lennart
    AUTOMATICA, 2009, 45 (11) : 2627 - 2633
  • [36] Correction of biased climate simulated by biased physics through parameter estimation in an intermediate coupled model
    Zhang, Xuefeng
    Zhang, Shaoqing
    Liu, Zhengyu
    Wu, Xinrong
    Han, Guijun
    CLIMATE DYNAMICS, 2016, 47 (5-6) : 1899 - 1912
  • [37] Enhanced flood forecasting through ensemble data assimilation and joint state-parameter estimation
    Ziliani, Matteo G.
    Ghostine, Rabih
    Ait-El-Fquih, Boujemaa
    McCabe, Matthew F.
    Hoteit, Ibrahim
    JOURNAL OF HYDROLOGY, 2019, 577
  • [38] Measuring input synchrony in the Omstein-Uhlenbeck neuronal model through input parameter estimation
    Koutsou, Achilleas
    Kanev, Jacob
    Christodoulou, Chris
    BRAIN RESEARCH, 2013, 1536 : 97 - 106
  • [39] Parameter estimation with scarce measurements
    Ding, Feng
    Liu, Guangjun
    Liu, Xiaoping P.
    AUTOMATICA, 2011, 47 (08) : 1646 - 1655
  • [40] A GALERKIN STRATEGY WITH PROPER ORTHOGONAL DECOMPOSITION FOR PARAMETER-DEPENDENT PROBLEMS - ANALYSIS, ASSESSMENTS AND APPLICATIONS TO PARAMETER ESTIMATION
    Chapelle, D.
    Gariah, A.
    Moireau, P.
    Sainte-Marie, J.
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06): : 1821 - 1843