Parameter estimation through ignorance

被引:14
|
作者
Du, Hailiang [1 ]
Smith, Leonard A. [1 ,2 ]
机构
[1] London Sch Econ, Ctr Anal Time Series, London WC2A 2AE, England
[2] Univ Oxford Pembroke Coll, Oxford OX1 1DW, England
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 01期
基金
英国经济与社会研究理事会;
关键词
DATA ASSIMILATION; SYSTEMS; INFORMATION; FORECASTS; MODELS; STATE;
D O I
10.1103/PhysRevE.86.016213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dynamical modeling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A relatively simple method of parameter estimation for nonlinear systems is introduced, based on variations in the accuracy of probability forecasts. It is illustrated on the logistic map, the Henon map, and the 12-dimensional Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This approach is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors or the ability of the model to shadow the observations. Direct measures of inadequacy in the model, the "implied ignorance," and the information deficit are introduced.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Constrained parameter estimation with uncertain priors for Bayesian networks
    Karimnezhad, Ali
    Lucas, Peter J. F.
    Parsian, Ahmad
    ELECTRONIC JOURNAL OF STATISTICS, 2017, 11 (02): : 4000 - 4032
  • [22] Momentum fractional LMS for power signal parameter estimation
    Zubair, Syed
    Chaudhary, Naveed Ishtiaq
    Khan, Zeshan Aslam
    Wang, Wenwu
    SIGNAL PROCESSING, 2018, 142 : 441 - 449
  • [23] Quantitative Precipitation Forecast of a Tropical Cyclone through Optimal Parameter Estimation in a Convective Parameterization
    Yu, Xing
    Park, Seon Ki
    Lee, Yong Hee
    Choi, Yong Sang
    SOLA, 2013, 9 : 36 - 39
  • [24] Impact of Instantaneous Parameter Sensitivity on Ensemble-Based Parameter Estimation: Simulation With an Intermediate Coupled Model
    Cao, Lige
    Han, Guijun
    Li, Wei
    Wu, Haowen
    Wu, Xiaobo
    Zhou, Gongfu
    Zheng, Qingyu
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2024, 16 (09)
  • [25] Incompatibility in quantum parameter estimation
    Belliardo, Federico
    Giovannetti, Vittorio
    NEW JOURNAL OF PHYSICS, 2021, 23 (06):
  • [26] The "No Sampling Parameter Estimation (NSPE)" algorithm for stochastic differential equations
    Yenkie, Kirti M.
    Dituekar, Urmila
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2018, 129 : 376 - 383
  • [27] Parameter Estimation for Nonlinearly Parameterized Gray-Box Models
    Goel, Ankit
    Bernstein, Dennis S.
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 5280 - 5285
  • [28] Approaches to Parameter Estimation from Model Neurons and Biological Neurons
    Nogaret, Alain
    ALGORITHMS, 2022, 15 (05)
  • [29] Parameter estimation for the stochastically perturbed Navier-Stokes equations
    Cialenco, Igor
    Glatt-Holtz, Nathan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2011, 121 (04) : 701 - 724
  • [30] Smoothing and parameter estimation by soft-adherence to governing equations
    Rudy, Samuel H.
    Brunton, Steven L.
    Kutz, J. Nathan
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 398