Parameter estimation through ignorance

被引:14
|
作者
Du, Hailiang [1 ]
Smith, Leonard A. [1 ,2 ]
机构
[1] London Sch Econ, Ctr Anal Time Series, London WC2A 2AE, England
[2] Univ Oxford Pembroke Coll, Oxford OX1 1DW, England
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 01期
基金
英国经济与社会研究理事会;
关键词
DATA ASSIMILATION; SYSTEMS; INFORMATION; FORECASTS; MODELS; STATE;
D O I
10.1103/PhysRevE.86.016213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Dynamical modeling lies at the heart of our understanding of physical systems. Its role in science is deeper than mere operational forecasting, in that it allows us to evaluate the adequacy of the mathematical structure of our models. Despite the importance of model parameters, there is no general method of parameter estimation outside linear systems. A relatively simple method of parameter estimation for nonlinear systems is introduced, based on variations in the accuracy of probability forecasts. It is illustrated on the logistic map, the Henon map, and the 12-dimensional Lorenz96 flow, and its ability to outperform linear least squares in these systems is explored at various noise levels and sampling rates. As expected, it is more effective when the forecast error distributions are non-Gaussian. The method selects parameter values by minimizing a proper, local skill score for continuous probability forecasts as a function of the parameter values. This approach is easier to implement in practice than alternative nonlinear methods based on the geometry of attractors or the ability of the model to shadow the observations. Direct measures of inadequacy in the model, the "implied ignorance," and the information deficit are introduced.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Test models for improving filtering with model errors through stochastic parameter estimation
    Gershgorin, B.
    Harlim, J.
    Majda, A. J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (01) : 1 - 31
  • [2] Data Assimilation Methods for Neuronal State and Parameter Estimation
    Moye, Matthew J.
    Diekman, Casey O.
    JOURNAL OF MATHEMATICAL NEUROSCIENCE, 2018, 8
  • [3] Optimal Parameter Estimation of Solar Photovoltaics Through Nature Inspired Metaheuristic and Hybrid Approaches
    Chauhan, Abhishek
    Prakash, Surya
    IETE JOURNAL OF RESEARCH, 2024, 70 (02) : 1937 - 1955
  • [4] Dynamical State and Parameter Estimation
    Abarbanel, Henry D. I.
    Creveling, Daniel R.
    Farsian, Reza
    Kostuk, Mark
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2009, 8 (04): : 1341 - 1381
  • [5] Adaptive Battery Management and Parameter Estimation Through Physics-Based Modeling and Experimental Verification
    Lashway, Christopher R.
    Mohammed, Osama A.
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2016, 2 (04): : 454 - 464
  • [6] Optimal control methods for nonlinear parameter estimation in biophysical neuron models
    Kadakia, Nirag
    PLOS COMPUTATIONAL BIOLOGY, 2022, 18 (09)
  • [7] Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation
    Gershgorin, B.
    Harlim, J.
    Majda, A. J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (01) : 32 - 57
  • [8] Diversified Parameter Estimation in Complex Networks
    Tajer, Ali
    2014 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP), 2014, : 905 - 908
  • [9] On closure parameter estimation in chaotic systems
    Hakkarainen, J.
    Ilin, A.
    Solonen, A.
    Laine, M.
    Haario, H.
    Tamminen, J.
    Oja, E.
    Jarvinen, H.
    NONLINEAR PROCESSES IN GEOPHYSICS, 2012, 19 (01) : 127 - 143
  • [10] Data-Driven Parameter Estimation for Models with Nonlinear Parameter Dependence
    Goel, Ankit
    Bernstein, Dennis S.
    2018 IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2018, : 1470 - 1475